Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD, Utrecht, Netherlands.
Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands.
Science. 2014 Dec 12;346(6215):1342-4. doi: 10.1126/science.1259003.
Understanding the internal mechanisms controlling fault friction is crucial for understanding seismogenic slip on active faults. Displacement in such fault zones is frequently localized on highly reflective (mirrorlike) slip surfaces, coated with thin films of nanogranular fault rock. We show that mirror-slip surfaces developed in experimentally simulated calcite faults consist of aligned nanogranular chains or fibers that are ductile at room conditions. These microstructures and associated frictional data suggest a fault-slip mechanism resembling classical Ashby-Verrall superplasticity, capable of producing unstable fault slip. Diffusive mass transfer in nanocrystalline calcite gouge is shown to be fast enough for this mechanism to control seismogenesis in limestone terrains. With nanogranular fault surfaces becoming increasingly recognized in crustal faults, the proposed mechanism may be generally relevant to crustal seismogenesis.
了解控制断层摩擦的内部机制对于理解活断层的发震滑动至关重要。这些断层带中的位移通常集中在高度反射(镜状)的滑动面上,这些滑动面上覆盖着纳米级颗粒断层岩的薄膜。我们表明,在实验模拟方解石断层中形成的镜面滑动面由排列整齐的纳米级颗粒链或纤维组成,在室温条件下具有延性。这些微观结构和相关的摩擦数据表明,断层滑动机制类似于经典的 Ashby-Verrall 超塑性,能够产生不稳定的断层滑动。纳米级方解石碎屑中的扩散物质转移速度足够快,使得这种机制能够控制石灰岩地区的地震发生。随着纳米级颗粒断层表面在地壳断层中越来越被认识到,所提出的机制可能与地壳地震的发生普遍相关。