Suppr超能文献

沙鼠两耳时间差的神经表征从中脑转换至皮层。

The neural representation of interaural time differences in gerbils is transformed from midbrain to cortex.

作者信息

Belliveau Lucile A C, Lyamzin Dmitry R, Lesica Nicholas A

机构信息

Ear Institute, University College London, London WC1E 6BT, United Kingdom and Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 80802 Munich, Germany.

Ear Institute, University College London, London WC1E 6BT, United Kingdom and

出版信息

J Neurosci. 2014 Dec 10;34(50):16796-808. doi: 10.1523/JNEUROSCI.2432-14.2014.

Abstract

Interaural time differences (ITDs) are the dominant cue for the localization of low-frequency sounds. While much is known about the processing of ITDs in the auditory brainstem and midbrain, there have been relatively few studies of ITD processing in auditory cortex. In this study, we compared the neural representation of ITDs in the inferior colliculus (IC) and primary auditory cortex (A1) of gerbils. Our IC results were largely consistent with previous studies, with most cells responding maximally to ITDs that correspond to the contralateral edge of the physiological range. In A1, however, we found that preferred ITDs were distributed evenly throughout the physiological range without any contralateral bias. This difference in the distribution of preferred ITDs in IC and A1 had a major impact on the coding of ITDs at the population level: while a labeled-line decoder that considered the tuning of individual cells performed well on both IC and A1 responses, a two-channel decoder based on the overall activity in each hemisphere performed poorly on A1 responses relative to either labeled-line decoding of A1 responses or two-channel decoding of IC responses. These results suggest that the neural representation of ITDs in gerbils is transformed from IC to A1 and have important implications for how spatial location may be combined with other acoustic features for the analysis of complex auditory scenes.

摘要

双耳时间差(ITDs)是低频声音定位的主要线索。虽然人们对听觉脑干和中脑对ITDs的处理已经了解很多,但对听觉皮层中ITDs处理的研究相对较少。在本研究中,我们比较了沙鼠下丘(IC)和初级听觉皮层(A1)中ITDs的神经表征。我们在下丘的结果在很大程度上与先前的研究一致,大多数细胞对与生理范围对侧边缘相对应的ITDs反应最大。然而,在初级听觉皮层中,我们发现偏好的ITDs在整个生理范围内均匀分布,没有任何对侧偏向。下丘和初级听觉皮层中偏好ITDs分布的这种差异对群体水平上ITDs的编码有重大影响:虽然考虑单个细胞调谐的标记线解码器在处理下丘和初级听觉皮层的反应时表现良好,但基于每个半球整体活动的双通道解码器在处理初级听觉皮层的反应时,相对于初级听觉皮层反应的标记线解码或下丘反应的双通道解码表现较差。这些结果表明,沙鼠中ITDs的神经表征从下丘到初级听觉皮层发生了转变,并且对于如何将空间位置与其他声学特征结合起来分析复杂听觉场景具有重要意义。

相似文献

1
The neural representation of interaural time differences in gerbils is transformed from midbrain to cortex.
J Neurosci. 2014 Dec 10;34(50):16796-808. doi: 10.1523/JNEUROSCI.2432-14.2014.
3
Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
J Neurosci. 2018 Aug 1;38(31):6949-6966. doi: 10.1523/JNEUROSCI.3328-17.2018. Epub 2018 Jun 29.
4
Commissural Gain Control Enhances the Midbrain Representation of Sound Location.
J Neurosci. 2016 Apr 20;36(16):4470-81. doi: 10.1523/JNEUROSCI.3012-15.2016.
5
Responses to interaural time delay in human cortex.
J Neurophysiol. 2008 Nov;100(5):2712-8. doi: 10.1152/jn.90210.2008. Epub 2008 Sep 17.
6
The Representation of Interaural Time Differences in High-Frequency Auditory Cortex.
Cereb Cortex. 2016 Feb;26(2):656-68. doi: 10.1093/cercor/bhu230. Epub 2014 Sep 26.
7
Population coding of interaural time differences in gerbils and barn owls.
J Neurosci. 2010 Sep 1;30(35):11696-702. doi: 10.1523/JNEUROSCI.0846-10.2010.
8
Synthesis of Hemispheric ITD Tuning from the Readout of a Neural Map: Commonalities of Proposed Coding Schemes in Birds and Mammals.
J Neurosci. 2019 Nov 13;39(46):9053-9061. doi: 10.1523/JNEUROSCI.0873-19.2019. Epub 2019 Sep 30.
9
Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.
J Neurophysiol. 2005 Aug;94(2):1028-36. doi: 10.1152/jn.01143.2004. Epub 2005 Apr 13.
10
Evidence for opponent-channel coding of interaural time differences in human auditory cortex.
J Neurophysiol. 2010 Oct;104(4):1997-2007. doi: 10.1152/jn.00424.2009. Epub 2010 Aug 11.

引用本文的文献

1
Distinct Inhibitory Neurons Differently Shape Neuronal Codes for Sound Intensity in the Auditory Cortex.
J Neurosci. 2025 Jan 8;45(2):e1502232024. doi: 10.1523/JNEUROSCI.1502-23.2024.
2
Distinct Neuron Types Contribute to Hybrid Auditory Spatial Coding.
J Neurosci. 2024 Oct 23;44(43):e0159242024. doi: 10.1523/JNEUROSCI.0159-24.2024.
3
Organization of orbitofrontal-auditory pathways in the Mongolian gerbil.
J Comp Neurol. 2023 Oct;531(14):1459-1481. doi: 10.1002/cne.25525. Epub 2023 Jul 21.
4
"Distinct inhibitory neurons differently shape neuronal codes for sound intensity in the auditory cortex".
bioRxiv. 2024 Sep 27:2023.02.01.526470. doi: 10.1101/2023.02.01.526470.
5
Stimulus-frequency-dependent dominance of sound localization cues across the cochleotopic map of the inferior colliculus.
J Neurophysiol. 2020 May 1;123(5):1791-1807. doi: 10.1152/jn.00713.2019. Epub 2020 Mar 18.
6
Synthesis of Hemispheric ITD Tuning from the Readout of a Neural Map: Commonalities of Proposed Coding Schemes in Birds and Mammals.
J Neurosci. 2019 Nov 13;39(46):9053-9061. doi: 10.1523/JNEUROSCI.0873-19.2019. Epub 2019 Sep 30.
7
Neural coding and perception of auditory motion direction based on interaural time differences.
J Neurophysiol. 2019 Oct 1;122(4):1821-1842. doi: 10.1152/jn.00081.2019. Epub 2019 Aug 28.
8
Neurons in primary auditory cortex represent sound source location in a cue-invariant manner.
Nat Commun. 2019 Jul 9;10(1):3019. doi: 10.1038/s41467-019-10868-9.
9
Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
J Neurosci. 2018 Aug 1;38(31):6949-6966. doi: 10.1523/JNEUROSCI.3328-17.2018. Epub 2018 Jun 29.

本文引用的文献

2
Detecting interaural time differences and remodeling their representation.
Trends Neurosci. 2014 May;37(5):289-300. doi: 10.1016/j.tins.2014.03.002. Epub 2014 Apr 11.
3
Independent population coding of speech with sub-millisecond precision.
J Neurosci. 2013 Dec 4;33(49):19362-72. doi: 10.1523/JNEUROSCI.3711-13.2013.
4
Decoding neural responses to temporal cues for sound localization.
Elife. 2013 Dec 3;2:e01312. doi: 10.7554/eLife.01312.
6
Decoding sound source location and separation using neural population activity patterns.
J Neurosci. 2013 Oct 2;33(40):15837-47. doi: 10.1523/JNEUROSCI.2034-13.2013.
7
Intracortical multiplication of thalamocortical signals in mouse auditory cortex.
Nat Neurosci. 2013 Sep;16(9):1179-81. doi: 10.1038/nn.3493. Epub 2013 Aug 11.
8
Spatial stream segregation by auditory cortical neurons.
J Neurosci. 2013 Jul 3;33(27):10986-1001. doi: 10.1523/JNEUROSCI.1065-13.2013.
10
Sound localization in noise by gerbils and humans.
J Assoc Res Otolaryngol. 2012 Apr;13(2):237-248. doi: 10.1007/s10162-011-0301-4. Epub 2012 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验