Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461,
Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, 1400-038, Lisbon, Portugal, and.
J Neurosci. 2019 Nov 13;39(46):9053-9061. doi: 10.1523/JNEUROSCI.0873-19.2019. Epub 2019 Sep 30.
A major cue to infer sound direction is the difference in arrival time of the sound at the left and right ears, called interaural time difference (ITD). The neural coding of ITD and its similarity across species have been strongly debated. In the barn owl, an auditory specialist relying on sound localization to capture prey, ITDs within the physiological range determined by the head width are topographically represented at each frequency. The topographic representation suggests that sound direction may be inferred from the location of maximal neural activity within the map. Such topographical representation of ITD, however, is not evident in mammals. Instead, the preferred ITD of neurons in the mammalian brainstem often lies outside the physiological range and depends on the neuron's best frequency. Because of these disparities, it has been assumed that how spatial hearing is achieved in birds and mammals is fundamentally different. However, recent studies reveal ITD responses in the owl's forebrain and midbrain premotor area that are consistent with coding schemes proposed in mammals. Particularly, sound location in owls could be decoded from the relative firing rates of two broadly and inversely ITD-tuned channels. This evidence suggests that, at downstream stages, the code for ITD may not be qualitatively different across species. Thus, while experimental evidence continues to support the notion of differences in ITD representation across species and brain regions, the latest results indicate notable commonalities, suggesting that codes driving orienting behavior in mammals and birds may be comparable.
推断声音方向的一个主要线索是声音到达左右耳朵的时间差,称为耳间时间差 (ITD)。ITD 的神经编码及其在物种间的相似性一直存在激烈争论。在依赖声音定位来捕获猎物的听觉专家仓鸮中,头宽决定的生理范围内的 ITD 以地形方式在每个频率上表示。这种地形表示表明,声音方向可能可以根据地图中最大神经活动的位置来推断。然而,哺乳动物中并没有明显的 ITD 这种地形表示。相反,哺乳动物脑干中神经元的首选 ITD 通常超出生理范围,取决于神经元的最佳频率。由于这些差异,人们假设鸟类和哺乳动物如何实现空间听觉在根本上是不同的。然而,最近的研究揭示了猫头鹰前脑和中脑运动前区的 ITD 反应,这些反应与哺乳动物中提出的编码方案一致。特别是,在猫头鹰中,声音位置可以从两个广泛且反向 ITD 调谐的通道的相对放电率中解码出来。这一证据表明,在下游阶段,ITD 的编码在物种和脑区之间可能没有本质上的不同。因此,尽管实验证据继续支持不同物种和脑区 ITD 表示存在差异的观点,但最新的结果表明存在显著的共性,这表明驱动哺乳动物和鸟类定向行为的代码可能具有可比性。