Suppr超能文献

印度洋查戈斯群岛的珊瑚礁与岛屿:为何它是世界上最大的禁捕海洋保护区。

Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest no-take marine protected area.

作者信息

Sheppard C R C, Ateweberhan M, Bowen B W, Carr P, Chen C A, Clubbe C, Craig M T, Ebinghaus R, Eble J, Fitzsimmons N, Gaither M R, Gan C-H, Gollock M, Guzman N, Graham N A J, Harris A, Jones R, Keshavmurthy S, Koldewey H, Lundin C G, Mortimer J A, Obura D, Pfeiffer M, Price A R G, Purkis S, Raines P, Readman J W, Riegl B, Rogers A, Schleyer M, Seaward M R D, Sheppard A L S, Tamelander J, Turner J R, Visram S, Vogler C, Vogt S, Wolschke H, Yang J M-C, Yang S-Y, Yesson C

机构信息

School of Life Sciences, University of Warwick, CV4 7AL, UK.

Hawai'i Institute of Marine Biology, P.O. Box 1346, Kane'ohe, Hawai'i. 96744, USA.

出版信息

Aquat Conserv. 2012 Mar;22(2):232-261. doi: 10.1002/aqc.1248.

Abstract

The Chagos Archipelago was designated a no-take marine protected area (MPA) in 2010; it covers 550 000 km, with more than 60 000 km shallow limestone platform and reefs. This has doubled the global cover of such MPAs.It contains 25-50% of the Indian Ocean reef area remaining in excellent condition, as well as the world's largest contiguous undamaged reef area. It has suffered from warming episodes, but after the most severe mortality event of 1998, coral cover was restored after 10 years.Coral reef fishes are orders of magnitude more abundant than in other Indian Ocean locations, regardless of whether the latter are fished or protected.Coral diseases are extremely low, and no invasive marine species are known.Genetically, Chagos marine species are part of the Western Indian Ocean, and Chagos serves as a 'stepping-stone' in the ocean.The no-take MPA extends to the 200 nm boundary, and. includes 86 unfished seamounts and 243 deep knolls as well as encompassing important pelagic species.On the larger islands, native plants, coconut crabs, bird and turtle colonies were largely destroyed in plantation times, but several smaller islands are in relatively undamaged state.There are now 10 'important bird areas', coconut crab density is high and numbers of green and hawksbill turtles are recovering.Diego Garcia atoll contains a military facility; this atoll contains one Ramsar site and several 'strict nature reserves'. Pollutant monitoring shows it to be the least polluted inhabited atoll in the world. Today, strict environmental regulations are enforced.Shoreline erosion is significant in many places. Its economic cost in the inhabited part of Diego Garcia is very high, but all islands are vulnerable.Chagos is ideally situated for several monitoring programmes, and use is increasingly being made of the archipelago for this purpose.

摘要

查戈斯群岛于2010年被指定为禁捕海洋保护区(MPA);它覆盖面积达55万平方公里,其中有超过6万平方公里的浅海石灰岩台地和珊瑚礁。这使此类海洋保护区的全球覆盖面积增加了一倍。它拥有印度洋珊瑚礁区域中25% - 50%仍处于极佳状态的区域,以及世界上最大的连续未受损珊瑚礁区域。它曾经历过暖化事件,但在1998年最严重的死亡事件之后,珊瑚覆盖面积在10年后得以恢复。与印度洋其他区域相比,无论后者是否受到捕捞或保护,查戈斯群岛的珊瑚礁鱼类数量都要多几个数量级。珊瑚疾病极少,且不存在已知的入侵海洋物种。从基因角度来看,查戈斯海洋物种是西印度洋的一部分,查戈斯群岛在海洋中起到了“跳板”的作用。禁捕海洋保护区延伸至200海里边界,包括86座未捕捞的海山和243个深海小丘,还涵盖了重要的远洋物种。在较大的岛屿上,本土植物、椰子蟹、鸟类和海龟栖息地在种植园时期大多遭到破坏,但一些较小的岛屿相对未受损害。现在有10个“重要鸟类区域”,椰子蟹密度很高,绿海龟和玳瑁的数量正在恢复。迪戈加西亚环礁有一个军事设施;该环礁有一处拉姆萨尔湿地和几个“严格自然保护区”。污染物监测显示它是世界上污染最少的有人居住环礁。如今,严格的环境法规得到执行。许多地方的海岸线侵蚀严重。在迪戈加西亚有人居住地区,其经济成本非常高,但所有岛屿都很脆弱。查戈斯群岛地理位置优越,适合开展多项监测项目,并且越来越多地被用于这一目的。

相似文献

2
Potential benefits to fisheries and biodiversity of the Chagos Archipelago/British Indian Ocean Territory as a no-take marine reserve.
Mar Pollut Bull. 2010 Nov;60(11):1906-15. doi: 10.1016/j.marpolbul.2010.10.002. Epub 2010 Oct 20.
3
The creation of the Chagos marine protected area: a fisheries perspective(☆).
Adv Mar Biol. 2014;69:79-127. doi: 10.1016/B978-0-12-800214-8.00003-7.
4
Risks to large marine protected areas posed by drifting fish aggregation devices.
Conserv Biol. 2021 Aug;35(4):1222-1232. doi: 10.1111/cobi.13684. Epub 2021 Mar 8.
5
Exceptional biodiversity of the cryptofaunal decapods in the Chagos Archipelago, central Indian Ocean.
Mar Pollut Bull. 2018 Oct;135:636-647. doi: 10.1016/j.marpolbul.2018.07.063. Epub 2018 Jul 31.
6
Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
Zootaxa. 2020 Nov 16;4878(3):zootaxa.4878.3.2. doi: 10.11646/zootaxa.4878.3.2.
9
The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles.
Mar Pollut Bull. 2018 Sep;134:99-105. doi: 10.1016/j.marpolbul.2018.03.018. Epub 2018 Mar 21.

引用本文的文献

1
Predicting the Distribution of Mesophotic Coral Ecosystems in the Chagos Archipelago.
Ecol Evol. 2025 Apr 2;15(4):e71130. doi: 10.1002/ece3.71130. eCollection 2025 Apr.
2
Island restoration to rebuild seabird populations and amplify coral reef functioning.
Conserv Biol. 2025 Feb;39(1):e14313. doi: 10.1111/cobi.14313. Epub 2024 Jun 18.
3
Improved bathymetry leads to >4000 new seamount predictions in the global ocean - but beware of phantom seamounts!
UCL Open Environ. 2021 Dec 22;3:e030. doi: 10.14324/111.444/ucloe.000030. eCollection 2021.
4
Terrestrial invasive species alter marine vertebrate behaviour.
Nat Ecol Evol. 2023 Jan;7(1):82-91. doi: 10.1038/s41559-022-01931-8. Epub 2023 Jan 5.
5
Complete mitochondrial genomes of three reef forming corals (Acroporidae, Scleractinia) from Chagos Archipelago, Indian Ocean.
Biodivers Data J. 2021 Sep 30;9:e72762. doi: 10.3897/BDJ.9.e72762. eCollection 2021.
6
Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish.
Sci Rep. 2021 Jun 15;11(1):12575. doi: 10.1038/s41598-021-91884-y.
7
Fine-scale oceanographic drivers of reef manta ray () visitation patterns at a feeding aggregation site.
Ecol Evol. 2021 Mar 24;11(9):4588-4604. doi: 10.1002/ece3.7357. eCollection 2021 May.
8
Analysing detection gaps in acoustic telemetry data to infer differential movement patterns in fish.
Ecol Evol. 2021 Feb 10;11(6):2717-2730. doi: 10.1002/ece3.7226. eCollection 2021 Mar.
9
Risks to large marine protected areas posed by drifting fish aggregation devices.
Conserv Biol. 2021 Aug;35(4):1222-1232. doi: 10.1111/cobi.13684. Epub 2021 Mar 8.
10
Resolving fine-scale population structure and fishery exploitation using sequenced microsatellites in a northern fish.
Evol Appl. 2020 Feb 20;13(5):1055-1068. doi: 10.1111/eva.12922. eCollection 2020 May.

本文引用的文献

2
Phylogeography of the crown-of-thorns starfish in the Indian Ocean.
PLoS One. 2012;7(8):e43499. doi: 10.1371/journal.pone.0043499. Epub 2012 Aug 21.
6
Tracking apex marine predator movements in a dynamic ocean.
Nature. 2011 Jun 22;475(7354):86-90. doi: 10.1038/nature10082.
7
Global habitat suitability for framework-forming cold-water corals.
PLoS One. 2011 Apr 15;6(4):e18483. doi: 10.1371/journal.pone.0018483.
8
Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes.
PLoS Biol. 2011 Apr;9(4):e1000606. doi: 10.1371/journal.pbio.1000606. Epub 2011 Apr 5.
9
Global trends in wind speed and wave height.
Science. 2011 Apr 22;332(6028):451-5. doi: 10.1126/science.1197219. Epub 2011 Mar 24.
10
Anecdotes and the shifting baseline syndrome of fisheries.
Trends Ecol Evol. 1995 Oct;10(10):430. doi: 10.1016/s0169-5347(00)89171-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验