Anokye Nana Kwame, Stamatakis Emmanuel
Health Economics Research Group (HERG), Brunel University, Uxbridge, Middlesex, London UB8 3PH, UK.
BMC Res Notes. 2014 Dec 16;7:921. doi: 10.1186/1756-0500-7-921.
Research on the correlates of physical activity (PA) and sedentary behaviour (SB) to date has used independent prediction equations for each behaviour, without considering that they are both part of the same continuum of movement. This assumption of independence might lead to inaccurate estimates because common underlying latent variables may simultaneously influence the propensity to engage in PA and SB. This study tests empirically the interdependent nature of PA and SB by comparing independent equations (current approach in the literature), and joint estimators (a novel but unexplored approach). Using Health Survey for England 2008 data, accelerometry-accessed PA and SB were separately modelled (using ordinary least squared regressions-OLS) and then jointly (using seemingly unrelated regressions-SUR). We tested for diagonality, specification, and goodness of fit.
The best fit models were the ones that allowed for interdependence of the two movement-related behaviours (rho=-0.156; p<0.001). The SUR showed more favourable properties compared to OLS models; producing lower standard errors and more consistent and efficient coefficients. The efficiency gain was more pronounced in the SB equation (Chi2=92.75; p<0.001).
Evidence from a large national population-wide accelerometry study suggests that accounting for the interdependent nature of PA and SB in prediction equations leads to more efficient modelling estimates. Further research using different samples is, however, required to fully understand the magnitude of efficiency gains accruable from using the joint estimators.
迄今为止,关于身体活动(PA)和久坐行为(SB)相关性的研究对每种行为都使用独立的预测方程,而没有考虑到它们都是同一运动连续体的一部分。这种独立性假设可能导致估计不准确,因为共同的潜在变量可能同时影响参与PA和SB的倾向。本研究通过比较独立方程(文献中的当前方法)和联合估计量(一种新颖但未探索的方法),对PA和SB的相互依存性质进行实证检验。使用2008年英格兰健康调查数据,分别对通过加速度计测量的PA和SB进行建模(使用普通最小二乘法回归-OLS),然后进行联合建模(使用看似不相关回归-SUR)。我们检验了对角线、设定和拟合优度。
最佳拟合模型是允许两种与运动相关行为相互依存的模型(rho=-0.156;p<0.001)。与OLS模型相比,SUR显示出更有利的特性;产生更低的标准误差以及更一致和有效的系数。在SB方程中效率提升更为显著(卡方=92.75;p<0.001)。
一项基于全国大量人群的加速度计研究的证据表明,在预测方程中考虑PA和SB的相互依存性质会导致更有效的建模估计。然而,需要使用不同样本进行进一步研究,以充分了解使用联合估计量可获得的效率提升幅度。