Gődény Mária, Léránt Gergely
Radiológiai Diagnosztikai Osztály, Országos Onkológiai Intézet, Budapest, Hungary.
Magy Onkol. 2014 Dec;58(4):269-80. Epub 2014 Oct 8.
Magnetic resonance imaging (MRI) has developed rapidly during the past few years and, according to the needs of therapy, has opened new perspectives in oncologic imaging with better and better realization of the latest technological advances. After the introduction of "organ preservation" protocols the role of imaging has become more important. New therapeutic methods (improvement in radiation therapy and chemotherapy) need better tumor characterization and prognostic information along with the most accurate anatomical information. Multiparametric anatomical and functional MR imaging (MM-MRI) using high magnetic field strength (3 Tesla) are useful in determining tumor-specific MRI biomarkers and in evaluating the changes in these parameters during therapy to provide early assessment of the therapeutic response. Diffusion-weighted MRI (DW-MRI) provides information at the cellular level about cell density and the integrity of the plasma membrane. DW-MRI shows potential in improving the detection of cancer due to its high specificity and high negative predictive value. Quantification is performed using an apparent diffusion coefficient (ADC), the values are independent of the magnetic field strength. In the latest publications the accuracy of DW-MRI has been reported around 90% for the differentiation between malignant versus benign tumor using an ADC cut-off mean value of 0.700-1.200 10(-3) mm(2)/s units, but no common threshold ADC value exists in clinical routine for the differentiation of malignant and benign tissues. Dynamic contrast-enhanced MRI (DCE-MRI), as a marker of angiogenesis, provides information about vascularization at the tissue level. Angiogenetic alterations cause changes in the parameters of vascular physiology (perfusion, blood volume, capillary permeability) and thus alter the contrast enhancement observed on contrast MRI. High-grade and/or advanced stage tumors are associated with increased blood volume, increased permeability and increased perfusion; the data can be evaluated using semiquantitative or quantitative methods. Magnetic resonance spectroscopic imaging (MRSI) provides biochemical analysis at the molecular level. The results are promising, although further studies are required to determine whether MRSI can be used to identify or exclude cancer within regions where the cancer is not evident on conventional MRI or with the other functional imaging methods. Some of the studies demonstrated the usefulness of these functional MRI methods also in the head and neck region to differentiate benign from malignant tumors, to quantify the response to radiation therapy and chemotherapy, to identify residual or recurrent tumor and to correlate the perfusion or diffusion data with prognosis. There are still some overlaps between benign and malignant changes, and the use of these functional MR measurements in routine diagnostics are still not fully validated today. Functional MR measurements are useful parts of the high quality multiparametric MRI, they offer important supportive biological and molecular information with the aid of high resolution morphological imaging.
在过去几年中,磁共振成像(MRI)发展迅速,并且根据治疗需求,随着对最新技术进展的更好实现,在肿瘤成像方面开辟了新的前景。在引入“器官保留”方案后,成像的作用变得更加重要。新的治疗方法(放射治疗和化疗的改进)需要更好的肿瘤特征描述和预后信息以及最准确的解剖学信息。使用高磁场强度(3特斯拉)的多参数解剖和功能磁共振成像(MM-MRI)有助于确定肿瘤特异性MRI生物标志物,并评估治疗期间这些参数的变化,以提供对治疗反应的早期评估。扩散加权磁共振成像(DW-MRI)在细胞水平提供有关细胞密度和质膜完整性的信息。DW-MRI因其高特异性和高阴性预测价值,在改善癌症检测方面显示出潜力。使用表观扩散系数(ADC)进行定量,其值与磁场强度无关。在最新的出版物中,使用ADC截止平均值0.700 - 1.200×10⁻³mm²/s单位区分恶性与良性肿瘤时,DW-MRI的准确性报告约为90%,但在临床常规中不存在用于区分恶性和良性组织的通用阈值ADC值。动态对比增强磁共振成像(DCE-MRI)作为血管生成的标志物,在组织水平提供有关血管化的信息。血管生成改变会导致血管生理参数(灌注、血容量、毛细血管通透性)发生变化,从而改变在对比增强MRI上观察到的对比增强。高级别和/或晚期肿瘤与血容量增加、通透性增加和灌注增加相关;这些数据可以使用半定量或定量方法进行评估。磁共振波谱成像(MRSI)在分子水平提供生化分析。结果很有前景,尽管还需要进一步研究来确定MRSI是否可用于在传统MRI或其他功能成像方法上未发现癌症的区域识别或排除癌症。一些研究表明,这些功能MRI方法在头颈部区域也有助于区分良性与恶性肿瘤、量化对放射治疗和化疗的反应、识别残留或复发性肿瘤以及将灌注或扩散数据与预后相关联。良性和恶性变化之间仍然存在一些重叠,并且这些功能MR测量在常规诊断中的应用至今仍未得到充分验证。功能MR测量是高质量多参数MRI的有用组成部分,它们借助高分辨率形态成像提供重要的支持性生物学和分子信息。