Choudhury D, Suzuki T, Tokura Y, Taguchi Y
RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan.
1] RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan [2] Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan.
Sci Rep. 2014 Dec 18;4:7544. doi: 10.1038/srep07544.
Magnetocaloric effect is the phenomenon that temperature change of a magnetic material is induced by application of a magnetic field. This effect can be applied to environmentally-benign magnetic refrigeration technology. Here we show a key role of magnetic-field-induced structural instability in enhancing the magnetocaloric effect for MnCo(1-x)Zn(x)Ge alloys (x = 0-0.05). The increase in x rapidly reduces the martensitic transition temperature while keeping the ferromagnetic transition around room temperature. Fine tuning of x around x = 0.03 leads to the concomitant structural and ferromagnetic transition in a cooling process, giving rise to enhanced magnetocaloric effect as well as magnetic-field-induced structural transition. Analyses of the structural phase diagrams in the T-H plane in terms of Landau free-energy phenomenology accounts for the characteristic x-dependence of the observed magnetocaloric effect, pointing to the importance of the magnetostructural coupling for the design of high-performance magnetocalorics.
磁热效应是指通过施加磁场来诱导磁性材料温度变化的现象。这种效应可应用于环境友好型磁制冷技术。在此,我们展示了磁场诱导的结构不稳定性在增强MnCo(1-x)Zn(x)Ge合金(x = 0 - 0.05)磁热效应方面的关键作用。x的增加会迅速降低马氏体转变温度,同时使铁磁转变保持在室温附近。在x = 0.03附近微调x会导致在冷却过程中伴随结构和铁磁转变,从而产生增强的磁热效应以及磁场诱导的结构转变。根据朗道自由能唯象学对T - H平面中的结构相图进行分析,解释了所观察到的磁热效应的特征x依赖性,指出了磁结构耦合对于高性能磁热材料设计的重要性。