Suppr超能文献

一种关于胶质瘤患者短期与长期生存情况的数学模型。

A mathematical model for short-term vs. long-term survival in patients with glioma.

作者信息

Nikas Jason B

机构信息

Genomix, Inc. Minneapolis, MN 55364, USA.

出版信息

Am J Cancer Res. 2014 Nov 19;4(6):862-73. eCollection 2014.

Abstract

Gliomas, the most common primary brain tumors in adults, constitute clinically, histologically, and molecularly a most heterogeneous type of cancer. Owing to this, accurate clinical prognosis for short-term vs. long-term survival for patients with grade II or III glioma is currently nonexistent. A rigorous, multi-method bioinformatic approach was used to identify the top most differentially expressed genes as captured by mRNA sequencing of tumor tissue. Mathematical modeling was employed to develop the model, and three different and independent methods of validation were used to assess its performance. I present here a mathematical model that can identify with a high accuracy (sensitivity=92.9%, specificity=96.0%) those patients with glioma (grade II or III) who will experience short-term survival (≤ 1 year), as well as those with long-term survival (≥ 3 years), at the time of diagnosis and prior to surgery and adjuvant chemotherapy. The 5 gene input variables to the model are: FAM120AOS, PDLIM4, OCIAD2, PCDH15, and MXI1. MXI1, a transcriptional repressor, represents the top biomarker of survival and the most promising target for the development of a pharmacological treatment.

摘要

神经胶质瘤是成人中最常见的原发性脑肿瘤,在临床、组织学和分子层面上都是一种高度异质性的癌症类型。正因如此,目前不存在针对II级或III级神经胶质瘤患者短期与长期生存的准确临床预后评估。本研究采用了一种严谨的多方法生物信息学方法,以识别肿瘤组织mRNA测序所捕获的差异表达最显著的基因。运用数学建模来开发该模型,并使用三种不同且独立的验证方法来评估其性能。在此,我展示一种数学模型,该模型能够在诊断时、手术和辅助化疗之前,以高精度(敏感性=92.9%,特异性=96.0%)识别出患有神经胶质瘤(II级或III级)且将经历短期生存(≤1年)以及长期生存(≥3年)的患者。该模型的5个基因输入变量为:FAM120AOS、PDLIM4、OCIAD2、PCDH15和MXI1。MXI1作为一种转录抑制因子,是生存的首要生物标志物,也是药物治疗开发最具潜力的靶点。

相似文献

7
Input of molecular analysis in medical management of primary brain tumor patients.分子分析在原发性脑肿瘤患者医疗管理中的应用。
Rev Neurol (Paris). 2015 Jun-Jul;171(6-7):457-65. doi: 10.1016/j.neurol.2015.04.002. Epub 2015 May 27.

引用本文的文献

7
Genome-Wide DNA Methylation Model for the Diagnosis of Prostate Cancer.用于前列腺癌诊断的全基因组DNA甲基化模型
ACS Omega. 2019 Sep 5;4(12):14895-14901. doi: 10.1021/acsomega.9b01613. eCollection 2019 Sep 17.

本文引用的文献

5
APOBEC3B is an enzymatic source of mutation in breast cancer.APOBEC3B 是乳腺癌突变的酶源。
Nature. 2013 Feb 21;494(7437):366-70. doi: 10.1038/nature11881. Epub 2013 Feb 6.
6
Genetics of adult glioma.成人胶质瘤的遗传学
Cancer Genet. 2012 Dec;205(12):613-21. doi: 10.1016/j.cancergen.2012.10.009. Epub 2012 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验