Canagaratna Manjula R, Massoli Paola, Browne Eleanor C, Franklin Jonathan P, Wilson Kevin R, Onasch Timothy B, Kirchstetter Thomas W, Fortner Edward C, Kolb Charles E, Jayne John T, Kroll Jesse H, Worsnop Douglas R
†Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, Massachusetts 01821, United States.
‡Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
J Phys Chem A. 2015 May 14;119(19):4589-99. doi: 10.1021/jp510711u. Epub 2015 Jan 15.
Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores tested in these studies include black carbon, silver, gold, and platinum nanoparticles. These results demonstrate that SP vaporization is capable of providing enhanced organic chemical composition information for a wide range of organic coating materials and IR absorbing particle cores. The potential of using this technique to study organic species of interest in seeded laboratory chamber or flow reactor studies is discussed.
黑碳是大气气溶胶颗粒物(PM)的重要组成部分,对全球辐射收支和人类健康有重大影响。烟灰颗粒气溶胶质谱仪(SP-AMS)已被开发并用于难熔碳颗粒的实时环境测量。在SP-AMS中,黑碳或金属颗粒通过吸收连续波Nd:YAG激光器发出的1064 nm光而汽化。该方案允许对核心材料和涂层材料进行连续的“软”汽化。这项工作的主要重点是表征这种汽化方案在多大程度上能提供有关气溶胶颗粒的增强化学成分信息。从标准的SP-AMS质谱中很难提取到这些信息,因为它们因通常用于这些仪器的苛刻的70 eV电子轰击电离方案产生的广泛碎片化而变得复杂。因此,在这项工作中,使用8-14 eV范围内的同步加速器产生的真空紫外(VUV)光来测量碎片化程度最小的VUV-SP-AMS光谱。获得了市售炭黑、富勒烯黑和实验室生成的火焰烟灰的VUV-SP-AMS光谱。发现小碳簇阳离子(C(+)-C5(+))在所有样品的VUV-SP-AMS光谱中占主导地位,这表明相应的中性簇是SP汽化过程的关键产物。通过比较VUV-SP-AMS和SP-AMS光谱中观察到的碳簇比率,来确认可用于区分不同类型难熔碳颗粒的光谱特征。还对吸附在吸收性核心上的氧化有机物种的VUV-SP-AMS光谱进行了研究,发现与在200°C(用连续加热表面定量汽化环境氧化有机气溶胶所需的最低温度)下热汽化获得的光谱相比,其热诱导分解和碎片化程度更低。这些研究中测试的颗粒核心包括黑碳、银、金和铂纳米颗粒。这些结果表明,SP汽化能够为广泛的有机涂层材料和红外吸收颗粒核心提供增强的有机化学成分信息。讨论了使用该技术研究种子实验室腔室或流动反应器研究中感兴趣的有机物种的潜力。