Gherlenda Andrew N, Haigh Anthony M, Moore Ben D, Johnson Scott N, Riegler Markus
Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia,
Oecologia. 2015 Feb;177(2):607-17. doi: 10.1007/s00442-014-3182-5. Epub 2014 Dec 20.
It is essential to understand the combined effects of elevated [CO2] and temperature on insect herbivores when attempting to forecast climate change responses of diverse ecosystems. Plant species differ in foliar chemistry, and this may result in idiosyncratic plant-mediated responses of insect herbivores at elevated [CO2] and temperature. We measured the response of the eucalypt leaf beetle Paropsis atomaria (Coleoptera: Chrysomelidae) feeding on Eucalyptus tereticornis and Eucalyptus robusta. Seedlings were grown at ambient (400 µmol mol(-1)) or elevated (640 µmol mol(-1)) [CO2] and ambient (26/18 °C day/night) or elevated (ambient + 4 °C) temperature in a greenhouse for 7 months. Larvae fed on flush leaves from egg hatch to pupation while being directly exposed to these conditions. Elevated [CO2] reduced foliar [N] and [P], while it increased total nonstructural carbohydrates and the C:N ratio. Elevated temperature increased foliar [N] in E. robusta but not E. tereticornis. Plant-mediated effects of elevated [CO2] reduced female pupal weight and increased developmental time and leaf consumption. Larval survival at elevated [CO2] was impacted differently by the two host plant species; survival increased on E. robusta while it decreased on E. tereticornis. Elevated temperature accelerated larval development but did not impact other insect parameters. We did not detect a CO2 × temperature interaction, suggesting that elevated temperature as a combined direct and plant-mediated effect may not be able to ameliorate the negative plant-mediated effects of elevated [CO2] on insect herbivores. Our study highlighted host-plant-specific responses of insect herbivores to climate change factors that resulted in host-plant-specific survival.
在试图预测不同生态系统对气候变化的响应时,了解二氧化碳浓度升高和温度升高对昆虫食草动物的综合影响至关重要。植物物种的叶片化学组成不同,这可能导致在二氧化碳浓度升高和温度升高时,昆虫食草动物出现特异的植物介导反应。我们测量了以细叶桉和粗皮桉为食的桉树叶甲Paropsis atomaria(鞘翅目:叶甲科)的反应。幼苗在温室中于环境二氧化碳浓度(400 µmol mol(-1))或升高的二氧化碳浓度(640 µmol mol(-1))以及环境温度(白天26/夜间18 °C)或升高的温度(环境温度 + 4 °C)下生长7个月。幼虫从孵化到化蛹期间取食新抽出的叶片,并直接暴露于这些条件下。二氧化碳浓度升高降低了叶片中的氮和磷含量,同时增加了总非结构性碳水化合物和碳氮比。温度升高增加了粗皮桉叶片中的氮含量,但细叶桉未增加。二氧化碳浓度升高的植物介导效应降低了雌蛹重量,延长了发育时间并增加了叶片消耗量。两种寄主植物对二氧化碳浓度升高时幼虫存活的影响不同;在粗皮桉上存活率增加,而在细叶桉上存活率降低。温度升高加速了幼虫发育,但未影响其他昆虫参数。我们未检测到二氧化碳×温度的交互作用,这表明温度升高作为直接和植物介导的综合效应,可能无法缓解二氧化碳浓度升高对昆虫食草动物产生的负面植物介导效应。我们的研究强调了昆虫食草动物对气候变化因素的寄主植物特异性反应,这导致了寄主植物特异性的存活情况。