Suppr超能文献

基于拉普拉斯透明复合模型的高效 DCT 图像压缩系统。

An efficient DCT-based image compression system based on laplacian transparent composite model.

出版信息

IEEE Trans Image Process. 2015 Mar;24(3):886-900. doi: 10.1109/TIP.2014.2383324. Epub 2014 Dec 18.

Abstract

Recently, a new probability model dubbed the Laplacian transparent composite model (LPTCM) was developed for DCT coefficients, which could identify outlier coefficients in addition to providing superior modeling accuracy. In this paper, we aim at exploring its applications to image compression. To this end, we propose an efficient nonpredictive image compression system, where quantization (including both hard-decision quantization (HDQ) and soft-decision quantization (SDQ)) and entropy coding are completely redesigned based on the LPTCM. When tested over standard test images, the proposed system achieves overall coding results that are among the best and similar to those of H.264 or HEVC intra (predictive) coding, in terms of rate versus visual quality. On the other hand, in terms of rate versus objective quality, it significantly outperforms baseline JPEG by more than 4.3 dB in PSNR on average, with a moderate increase on complexity, and ECEB, the state-of-the-art nonpredictive image coding, by 0.75 dB when SDQ is OFF (i.e., HDQ case), with the same level of computational complexity, and by 1 dB when SDQ is ON, at the cost of slight increase in complexity. In comparison with H.264 intracoding, our system provides an overall 0.4-dB gain or so, with dramatically reduced computational complexity; in comparison with HEVC intracoding, it offers comparable coding performance in the high-rate region or for complicated images, but with only less than 5% of the HEVC intracoding complexity. In addition, our proposed system also offers multiresolution capability, which, together with its comparatively high coding efficiency and low complexity, makes it a good alternative for real-time image processing applications.

摘要

最近,一种新的概率模型——拉普拉斯透明复合模型(LPTCM)被开发出来,用于 DCT 系数,可以识别异常系数,同时提供更优的建模精度。在本文中,我们旨在探索其在图像压缩中的应用。为此,我们提出了一种高效的无预测图像压缩系统,其中量化(包括硬决策量化(HDQ)和软决策量化(SDQ))和熵编码完全基于 LPTCM 进行重新设计。在标准测试图像上进行测试时,所提出的系统在整体编码结果方面表现出色,在率失真方面与 H.264 或 HEVC 内(预测)编码相当,甚至在某些情况下优于它们。另一方面,在率失真方面,与基线 JPEG 相比,在 PSNR 方面平均提高了 4.3dB 以上,复杂度略有增加,在 ECEB 方面,在 SDQ 关闭(即 HDQ 情况下)时,与最先进的无预测图像编码相比提高了 0.75dB,复杂度相同,在 SDQ 打开时提高了 1dB,复杂度略有增加。与 H.264 内编码相比,我们的系统提供了整体 0.4dB 的增益,复杂度显著降低;与 HEVC 内编码相比,在高码率区域或复杂图像方面提供了可比的编码性能,但复杂度仅为 HEVC 内编码的 5%左右。此外,我们提出的系统还提供了多分辨率能力,这与其相对较高的编码效率和低复杂度相结合,使其成为实时图像处理应用的一种很好的选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验