Suppr超能文献

菲克定律辅助的半监督学习传播。

Fick's Law Assisted Propagation for Semisupervised Learning.

出版信息

IEEE Trans Neural Netw Learn Syst. 2015 Sep;26(9):2148-62. doi: 10.1109/TNNLS.2014.2376963. Epub 2014 Dec 18.

Abstract

How to propagate the label information from labeled examples to unlabeled examples is a critical problem for graph-based semisupervised learning. Many label propagation algorithms have been developed in recent years and have obtained promising performance on various applications. However, the eigenvalues of iteration matrices in these algorithms are usually distributed irregularly, which slow down the convergence rate and impair the learning performance. This paper proposes a novel label propagation method called Fick's law assisted propagation (FLAP). Unlike the existing algorithms that are directly derived from statistical learning, FLAP is deduced on the basis of the theory of Fick's First Law of Diffusion, which is widely known as the fundamental theory in fluid-spreading. We prove that FLAP will converge with linear rate and show that FLAP makes eigenvalues of the iteration matrix distributed regularly. Comprehensive experimental evaluations on synthetic and practical datasets reveal that FLAP obtains encouraging results in terms of both accuracy and efficiency.

摘要

如何将标签信息从有标签的示例传播到无标签的示例是基于图的半监督学习中的一个关键问题。近年来已经开发了许多标签传播算法,并在各种应用中取得了有前景的性能。然而,这些算法中的迭代矩阵的特征值通常分布不规则,这会降低收敛速度并影响学习性能。本文提出了一种名为菲克定律辅助传播(FLAP)的新颖标签传播方法。与直接从统计学习中推导出来的现有算法不同,FLAP是基于菲克第一扩散定律的理论推导出来的,该定律被广泛认为是流体扩散的基本理论。我们证明了 FLAP 将以线性速率收敛,并表明 FLAP 使迭代矩阵的特征值规则分布。在合成和实际数据集上的综合实验评估表明,FLAP 在准确性和效率方面都取得了令人鼓舞的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验