Brimblecombe Katherine R, Gracie Caitlin J, Platt Nicola J, Cragg Stephanie J
Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK.
J Physiol. 2015 Feb 15;593(4):929-46. doi: 10.1113/jphysiol.2014.285890. Epub 2015 Jan 23.
The voltage-gated Ca(2+) channels (VGCCs) that catalyse striatal dopamine transmission are critical to dopamine function and might prime subpopulations of neurons for parkinsonian degeneration. However, the VGCCs that operate on mesostriatal axons are incompletely defined; previous studies encompassed channels on striatal cholinergic interneurons that strongly influence dopamine transmission. We define that multiple types of axonal VGCCs operate that extend beyond classic presynaptic N/P/Q channels to include T- and L-types. We reveal differences in VGCC function between mouse axon types that in humans are vulnerable versus resistant to Parkinson's disease. We show for the first time that this is underpinned by different sensitivity of dopamine transmission to extracellular Ca(2+) and by different spatiotemporal intracellular Ca(2+) microdomains. These data define key principles of how Ca(2+) and VGCCs govern dopamine transmission in the healthy brain and reveal differences between neuron types that might contribute to vulnerability in disease.
The axonal voltage-gated Ca(2+) channels (VGCCs) that catalyse dopamine (DA) transmission are incompletely defined. Yet, they are critical to DA function and might prime subpopulations of DA neurons for parkinsonian degeneration. Previous studies of VGCCs will have encompassed those on striatal cholinergic interneurons, which strongly influence DA transmission. We identify which VGCCs on DA axons govern DA transmission, we determine their dynamic properties and reveal an underlying basis for differences between the caudate putamen (CPu) and nucleus accumbens (NAc). We detected DA release evoked electrically during nicotinic receptor blockade or optogenetically by light activation of channel rhodopsin-expressing DA axons in mouse striatal slices. Subtype-specific VGCC blockers indicated that N-, Q-, T- and L-VGCCs govern DA release in CPu, but in NAc, T and L-channels are relatively silent. The roles of the most dominant channels were inversely frequency-dependent, due to low-pass filtering of DA release by Ca(2+)-dependent relationships between initial release probability and short-term plasticity. Ca(2+) concentration-response curves revealed that differences between CPu and NAc were due to greater underlying Ca(2+) sensitivity of DA transmission from CPu axons. Functions for 'silent' L- and T-channels in NAc could be unmasked by elevating extracellular [Ca(2+)]. Furthermore, we identified a greater coupling between BAPTA-sensitive, fast Ca(2+) transients and DA transmission in CPu axons, and evidence for endogenous fast buffering of Ca(2+) in NAc. These data reveal that a range of VGCCs operate dynamically on DA axons, depending on local driving forces. Furthermore, they reveal dramatic differences in Ca(2+) handling between axonal subpopulations that show different vulnerability to parkinsonian degeneration.
催化纹状体多巴胺传递的电压门控钙通道(VGCCs)对多巴胺功能至关重要,可能使神经元亚群易患帕金森氏变性。然而,作用于中脑纹状体轴突的VGCCs尚未完全明确;先前的研究涵盖了纹状体胆碱能中间神经元上的通道,这些通道对多巴胺传递有强烈影响。我们确定有多种类型的轴突VGCCs起作用,其范围超出了经典的突触前N/P/Q通道,还包括T型和L型。我们揭示了小鼠轴突类型之间VGCC功能的差异,在人类中,这些轴突类型对帕金森病有易感性和抗性。我们首次表明,这是由多巴胺传递对细胞外钙的不同敏感性以及不同时空细胞内钙微区所支撑的。这些数据定义了钙和VGCCs在健康大脑中如何控制多巴胺传递的关键原则,并揭示了神经元类型之间的差异,这些差异可能导致疾病易感性。
催化多巴胺(DA)传递的轴突电压门控钙通道(VGCCs)尚未完全明确。然而,它们对DA功能至关重要,可能使DA神经元亚群易患帕金森氏变性。先前对VGCCs的研究包括纹状体胆碱能中间神经元上的通道,这些通道对DA传递有强烈影响。我们确定DA轴突上哪些VGCCs控制DA传递,确定它们的动态特性,并揭示尾状壳核(CPu)和伏隔核(NAc)之间差异的潜在基础。我们在小鼠纹状体切片中检测到在烟碱受体阻断期间电诱发的DA释放,或通过光激活表达通道视紫红质的DA轴突进行光遗传学检测到的DA释放。亚型特异性VGCC阻滞剂表明,N型、Q型、T型和L型VGCCs控制CPu中的DA释放,但在NAc中,T型和L型通道相对不活跃。最主要通道的作用呈反频率依赖性,这是由于DA释放通过初始释放概率与短期可塑性之间的钙依赖性关系进行低通滤波。钙浓度-反应曲线表明,CPu和NAc之间的差异是由于CPu轴突的DA传递对钙的潜在敏感性更高。通过提高细胞外[Ca²⁺],可以揭示NAc中“沉默 ”的L型和T型通道的功能。此外,我们发现CPu轴突中BAPTA敏感的快速钙瞬变与DA传递之间有更强的耦合,以及NAc中钙内源性快速缓冲的证据。这些数据表明,一系列VGCCs在DA轴突上动态起作用,这取决于局部驱动力。此外,它们揭示了轴突亚群之间在钙处理方面的巨大差异,这些亚群对帕金森氏变性表现出不同的易感性。