Habeck Michael, Haviv Haim, Katz Adriana, Kapri-Pardes Einat, Ayciriex Sophie, Shevchenko Andrej, Ogawa Haruo, Toyoshima Chikashi, Karlish Steven J D
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
Max-Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
J Biol Chem. 2015 Feb 20;290(8):4829-4842. doi: 10.1074/jbc.M114.611384. Epub 2014 Dec 22.
The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70-80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump.
诸如钠钾ATP酶等膜蛋白的活性在很大程度上取决于周围的脂质环境。相互作用可以是环绕性的,这取决于膜的物理性质,或者是与跨膜结构域之间口袋中结合的脂质发生特异性相互作用。本文使用纯化的重组钠钾ATP酶描述了三种特定的脂质-蛋白质相互作用。(a)钠钾ATP酶的热稳定性关键取决于与18:0/18:1磷脂酰丝氨酸(1-硬脂酰-2-油酰-sn-甘油-3-磷酸-L-丝氨酸;SOPS)和胆固醇的特异性相互作用,这种相互作用能显著增强稳定性。我们在此表明,胆固醇与SOPS、FXYD1以及跨膜片段αTM8和-10之间的α亚基结合,以稳定该蛋白。(b)多不饱和中性脂质可使钠钾ATP酶的周转率提高60%以上。脂质特异性筛选表明,18:0/20:4和18:0/22:6磷脂酰乙醇胺(PE)是产生这种效应的最佳磷脂。(c)饱和磷脂酰胆碱和鞘磷脂,但不包括饱和磷脂酰丝氨酸或PE,可使钠钾ATP酶活性抑制70 - 80%。这种效应在很大程度上取决于胆固醇的存在。对钠钾ATP酶活性和E1 - E2构象转变的分析揭示了这些效应的动力学机制。刺激性和抑制性脂质都使构象平衡向E2倾斜,但它们的详细作用机制不同。PE加速E1→E2P的速率,但不影响E2(2K)ATP→E13NaATP,而鞘磷脂抑制E2(2K)ATP→E13NaATP的速率,对E1→E2P的影响很小。我们结合钠钾ATP酶的最新晶体结构讨论了这些脂质效应,并提出存在三个独立的特定脂质相互作用位点,它们在调节泵的活性和稳定性方面具有潜在的生理作用。