Wang Li, Prasad Bhagwat, Salphati Laurent, Chu Xiaoyan, Gupta Anshul, Hop Cornelis E C A, Evers Raymond, Unadkat Jashvant D
Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., B.P., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Drug Metabolism and Pharmacokinetics, Infection DMPK, AstraZeneca Pharmaceuticals LLP, Waltham, Massachusetts (A.G.); and Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.).
Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., B.P., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Drug Metabolism and Pharmacokinetics, Infection DMPK, AstraZeneca Pharmaceuticals LLP, Waltham, Massachusetts (A.G.); and Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.)
Drug Metab Dispos. 2015 Mar;43(3):367-74. doi: 10.1124/dmd.114.061580. Epub 2014 Dec 22.
We quantified, by liquid chromatography tandem mass spectrometry, transporter protein expression of BSEP, MATE1, MRP3, MRP4, NTCP, and OCT1 in our human liver bank (n = 55) and determined the relationship between protein expression and sex, age and genotype. These data complement our previous work in the same liver bank where we quantified the protein expression of OATPs, BCRP, MDR1, and MRP2. In addition, we quantified and compared the interspecies differences in expression of the hepatobiliary transporters, corresponding to the above human transporters, in liver tissue and hepatocytes of male beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Wistar rats. In all the species, the sinusoidal OATPs/Oatps were the most abundant hepatic transporters. However, there were notable interspecies differences in the relative abundance of the remaining transporters. For example, the next most abundant transporter in humans and monkeys was OCT1/Oct1, whereas it was Mrp2 and Ntcp in dogs/Wistar rats and Sprague-Dawley rats, respectively. In contrast, the protein expression of the efflux transporters BCRP/Bcrp, MDR1/Mdr1, MRP3/Mrp3, MRP4/Mrp4, and MATE1/Mate1 was much lower across all the species. For most transporters, the expression in the liver tissues was comparable to that in the unplated cryopreserved hepatocytes. These data on human liver transporter protein expression complete the picture of the expression of major human hepatobiliary transporters important in drug disposition and toxicity. In addition, the data on expression of the corresponding hepatobiliary transporters in preclinical species will be helpful in interpreting and extrapolating pharmacokinetic, pharmacological, and toxicological results from preclinical studies to humans.
我们通过液相色谱串联质谱法对人类肝脏库(n = 55)中BSEP、MATE1、MRP3、MRP4、NTCP和OCT1转运蛋白的表达进行了定量,并确定了蛋白表达与性别、年龄和基因型之间的关系。这些数据补充了我们之前在同一肝脏库中的工作,在之前的工作中我们对OATP、BCRP、MDR1和MRP2的蛋白表达进行了定量。此外,我们对雄性比格犬、食蟹猴、斯普拉格-道利大鼠和Wistar大鼠的肝脏组织和肝细胞中与上述人类转运蛋白相对应的肝胆转运蛋白的表达进行了定量和种间差异比较。在所有物种中,窦状隙OATP/Oatp是最丰富的肝脏转运蛋白。然而,其余转运蛋白的相对丰度存在显著的种间差异。例如,人类和猴子中第二丰富的转运蛋白是OCT1/Oct1,而在犬/Wistar大鼠和斯普拉格-道利大鼠中分别是Mrp2和Ntcp。相比之下,所有物种中流出转运蛋白BCRP/Bcrp、MDR1/Mdr1、MRP3/Mrp3、MRP4/Mrp4和MATE1/Mate1的蛋白表达要低得多。对于大多数转运蛋白,肝脏组织中的表达与未接种的冷冻保存肝细胞中的表达相当。这些关于人类肝脏转运蛋白表达的数据完善了在药物处置和毒性方面重要的主要人类肝胆转运蛋白表达的全貌。此外,临床前物种中相应肝胆转运蛋白表达的数据将有助于解释和外推临床前研究的药代动力学、药理学和毒理学结果至人类。