Suppr超能文献

静息态脑网络功能整合是否是工作记忆表现的非特异性生物标志物?

Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

机构信息

Biological Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, 26111 Oldenburg, Germany.

Department of Psychology and Sport Sciences, Westfälische Wilhelms-Universität, 48149 Münster, Germany.

出版信息

Neuroimage. 2015 Mar;108:182-93. doi: 10.1016/j.neuroimage.2014.12.046. Epub 2014 Dec 20.

Abstract

Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance.

摘要

静息状态下的功能大脑网络是否存在一种最佳拓扑结构,使我们的认知表现从中受益?先前的研究表明,静息态大脑网络的功能整合是认知表现的一个重要生物标志物。然而,目前尚不清楚更高的网络整合是对良好认知表现的一般性预测,还是特定的网络组织在静息状态下仅能预测特定的认知能力。在这里,我们使用两种任务来研究静息状态下的网络整合与认知表现之间的关系,这两种任务分别测量了工作记忆的不同方面;一项任务评估了视觉空间和另一个数字工作记忆。我们计算了网络聚类、模块性和效率,以捕捉不同网络组织水平的网络整合,并从统计学上比较它们与每个工作记忆测试中的表现的相关性。结果表明,每个工作记忆方面都受益于不同的静息状态拓扑结构,并且每个测试与网络整合的每个度量值都显示出显著不同的相关性。虽然全局网络整合和模块性的提高显著预测了视觉空间工作记忆的表现更好,但这两个指标与数字工作记忆的表现均无显著相关性。相比之下,在大脑网络聚类程度较高的受试者中,数字工作记忆表现更好,主要集中在顶内沟,这是工作记忆网络的核心脑区。我们的研究结果表明,静息状态大脑网络的局部和全局功能整合之间存在特定的平衡,有助于促进认知表现的特殊方面。在工作记忆的背景下,虽然视觉空间表现得益于全局整合的功能静息态大脑网络,但数字工作记忆则得益于局部处理能力的提高,尤其是在与工作记忆表现相关的脑区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验