Suppr超能文献

Mass changes in inositol tetrakis- and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells.

作者信息

Pittet D, Schlegel W, Lew D P, Monod A, Mayr G W

机构信息

Infectious Diseases Division, University Hospital, Genève, Switzerland.

出版信息

J Biol Chem. 1989 Nov 5;264(31):18489-93.

PMID:2553710
Abstract

Absolute concentrations of inositol phosphate isomers (InsP(s] were quantified in the myeloid cell line HL-60 using the metal-dye detection technique. Stimulation with the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP) led to distinct alterations in at least seven different inositol phosphate species. Whereas the intracellular concentrations of the tetrakisphosphate isomers (InsP4(s] were found below the micromolar range, inositol 1,3,4,5,6-pentakis- and hexakisphosphate levels were about two orders of magnitude higher (36 and 54 +/- 2 microM (mean +/- S.D.), respectively). The three InsP4(s) showed distinct kinetic pattern upon receptor activation, the transient elevation of inositol 1,3,4,5-tetrakisphosphate being faster both in onset and in redecrease than inositol 1,3,4,6-tetrakisphosphate. Whereas the two latter isomers reached maximally 2.75 and 2.9 +/- 0.2 microM, respectively, 1 min after stimulation, inositol 3,4,5,6-tetrakisphosphate remained elevated (3.5 +/- 0.4 microM) up to 5 min after fMLP. Unexpected changes in highly phosphorylated InsP(s) were observed, notably a rise in inositol 1,3,4,5,6-pentakisphosphate and in inositol hexakisphosphate to 52 +/- 3 and 60 +/- 1 microM, respectively. In terms of mass, the increases in highly phosphorylated inositols are by far highest among all InsP(s). Combining radiotracer method with mass determination it was observed that the specific radioactivity of various InsP(s) was different and changed markedly upon fMLP stimulation, in spite of a prolonged labeling period leading to apparent isotopic steady state. The data presented demonstrate agonist-induced elevations of highly phosphorylated InsP(s) and suggest that inositol 1,4,5-trisphosphate, product of receptor-activated phospholipase C, is metabolized rather via phosphorylation than only by dephosphorylation pathways.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验