Leemans W P, Gonsalves A J, Mao H-S, Nakamura K, Benedetti C, Schroeder C B, Tóth Cs, Daniels J, Mittelberger D E, Bulanov S S, Vay J-L, Geddes C G R, Esarey E
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA and Department of Physics, University of California, Berkeley, California 94720, USA.
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Phys Rev Lett. 2014 Dec 12;113(24):245002. doi: 10.1103/PhysRevLett.113.245002. Epub 2014 Dec 8.
Multi-GeV electron beams with energy up to 4.2 GeV, 6% rms energy spread, 6 pC charge, and 0.3 mrad rms divergence have been produced from a 9-cm-long capillary discharge waveguide with a plasma density of ≈7×10¹⁷ cm⁻³, powered by laser pulses with peak power up to 0.3 PW. Preformed plasma waveguides allow the use of lower laser power compared to unguided plasma structures to achieve the same electron beam energy. A detailed comparison between experiment and simulation indicates the sensitivity in this regime of the guiding and acceleration in the plasma structure to input intensity, density, and near-field laser mode profile.
利用峰值功率高达0.3拍瓦的激光脉冲驱动一根9厘米长、等离子体密度约为7×10¹⁷厘米⁻³的毛细管放电波导,产生了能量高达4.2吉电子伏、均方根能量展宽为6%、电荷量为6皮库、均方根发散角为0.3毫弧度的多吉电子伏电子束。与无引导的等离子体结构相比,预制等离子体波导在实现相同电子束能量时允许使用更低的激光功率。实验与模拟之间的详细比较表明,在该等离子体结构中,引导和加速对输入强度、密度以及激光近场模式分布在这一状态下具有敏感性。