Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA.
Phys Rev Lett. 2011 Jul 22;107(4):045001. doi: 10.1103/PhysRevLett.107.045001. Epub 2011 Jul 18.
Laser wakefield acceleration of electrons holds great promise for producing ultracompact stages of GeV scale, high-quality electron beams for applications such as x-ray free electron lasers and high-energy colliders. Ultrahigh intensity laser pulses can be self-guided by relativistic plasma waves (the wake) over tens of vacuum diffraction lengths, to give >1 GeV energy in centimeter-scale low density plasmas using ionization-induced injection to inject charge into the wake even at low densities. By restricting electron injection to a distinct short region, the injector stage, energetic electron beams (of the order of 100 MeV) with a relatively large energy spread are generated. Some of these electrons are then further accelerated by a second, longer accelerator stage, which increases their energy to ∼0.5 GeV while reducing the relative energy spread to <5% FWHM.
激光尾波场加速电子有望产生极紧凑型的 GeV 规模、高质量电子束,用于 X 射线自由电子激光和高能对撞机等应用。超强度激光脉冲可以通过相对论等离子体波(尾波)在数十个真空衍射长度上进行自导,从而在厘米级低密度等离子体中产生超过 1 GeV 的能量,即使在低密度下也可以通过电离感应注入将电荷注入尾波中。通过将电子注入限制在一个独特的短区域,即注入器阶段,可以产生具有相对较大能量扩散的高能电子束(约 100 MeV)。然后,其中一些电子通过第二个更长的加速器阶段进一步加速,从而将它们的能量增加到约 0.5 GeV,同时将相对能量扩散降低到<5% FWHM。