Suppr超能文献

肌酐清除率、步行速度与肌肉萎缩:一项队列研究。

Creatinine clearance, walking speed, and muscle atrophy: a cohort study.

作者信息

Roshanravan Baback, Patel Kushang V, Robinson-Cohen Cassianne, de Boer Ian H, O'Hare Ann M, Ferrucci Luigi, Himmelfarb Jonathan, Kestenbaum Bryan

机构信息

Division of Nephrology, Department of Medicine, University of Washington Kidney Research Institute, Seattle, WA.

Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA.

出版信息

Am J Kidney Dis. 2015 May;65(5):737-47. doi: 10.1053/j.ajkd.2014.10.016. Epub 2014 Dec 24.

Abstract

BACKGROUND

Chronic kidney disease is associated with malnutrition and inflammation. These processes may lead to loss of skeletal muscle and reduced physical performance. Associations of kidney function with muscle composition and longitudinal measures of physical performance are unknown.

STUDY DESIGN

Prospective cohort study.

SETTING & PARTICIPANTS: We evaluated 826 community-dwelling older adults enrolled in the Invecchiare in Chianti (InCHIANTI) Study who were free of baseline stroke or activities of daily living disability.

PREDICTOR

Baseline creatinine clearance (Clcr) based on 24-hour urine collection.

OUTCOMES

Cross-sectional and longitudinal trajectories of physical performance measured by 7-m usual gait speed, 400-m fast gait speed, and knee extension strength using isometric dynamometry. Calf muscle composition assessed by quantitative computed tomography.

RESULTS

Mean age of participants was 74 ± 7 (SD) years, with 183 having Clcr < 60 mL/min/1.73 m(2). After adjustment, each 10-mL/min/1.73 m(2) decrement in Clcr was associated with 0.01 (95% CI, 0.004-0.017) m/s slower 7-m usual walking speed and 0.008 (95% CI, 0.002-0.014) m/s slower 400-m walking speed. Each 10-mL/min/1.73 m(2) decrement in Clcr was associated with 28 (95% CI, 0.8-55) mm(2) lower muscle area and 0.15 (95% CI, 0.04-0.26) mg/cm(3) lower muscle density. After adjustment, lower Clcr was associated with slower mean 7-m (P=0.005) and 400-m (P=0.02) walk and knee extension strength (P=0.001) during the course of follow-up. During a mean follow-up of 7.1 ± 2.5 years, each 10-mL/min/1.73 m(2) lower baseline Clcr was associated with 0.024 (95% CI, 0.01-0.037) kg/y greater decline in knee strength.

LIMITATIONS

Single baseline measurement of Clcr and 3-year interval between follow-up visits may lead to nondifferential misclassification and attenuation of estimates.

CONCLUSIONS

Among older adults, lower Clcr is associated with muscle atrophy, reduced walking speed, and more rapid declines in lower-extremity strength over time.

摘要

背景

慢性肾脏病与营养不良和炎症相关。这些过程可能导致骨骼肌流失和身体机能下降。肾功能与肌肉组成及身体机能纵向指标之间的关联尚不清楚。

研究设计

前瞻性队列研究。

设置与参与者

我们评估了826名参与基安蒂地区衰老研究(InCHIANTI研究)的社区居住老年人,这些老年人无基线中风或日常生活活动障碍。

预测因素

基于24小时尿液收集的基线肌酐清除率(Clcr)。

结果

通过7米常规步态速度、400米快速步态速度以及使用等长测力法测量的膝关节伸展力量来衡量身体机能的横断面和纵向轨迹。通过定量计算机断层扫描评估小腿肌肉组成。

结果

参与者的平均年龄为74±7(标准差)岁,其中183人Clcr<60 mL/min/1.73 m²。调整后,Clcr每降低10 mL/min/1.73 m²,与7米常规步行速度减慢0.01(95%CI,0.004 - 0.017)m/s以及400米步行速度减慢0.008(95%CI,0.002 - 0.014)m/s相关。Clcr每降低10 mL/min/1.7 的肌肉面积减少28(95%CI,0.8 - 55)mm²,肌肉密度降低0.15(95%CI,0.04 - 0.26)mg/cm³。调整后,较低的Clcr与随访期间平均7米(P = 0.005)和400米(P = 0.02)步行速度减慢以及膝关节伸展力量减弱(P = 0.001)相关。在平均7.1±2.5年的随访期间,基线Clcr每降低10 mL/min/1.73 m²,与膝关节力量每年下降0.024(95%CI,0.01 - 0.037)kg相关。

局限性

Clcr的单次基线测量以及随访之间3年的间隔可能导致非差异性错误分类和估计值的衰减。

结论

在老年人中,较低的Clcr与肌肉萎缩、步行速度减慢以及随着时间推移下肢力量更快下降相关。

相似文献

1
Creatinine clearance, walking speed, and muscle atrophy: a cohort study.
Am J Kidney Dis. 2015 May;65(5):737-47. doi: 10.1053/j.ajkd.2014.10.016. Epub 2014 Dec 24.
3
Chronic kidney disease defined by cystatin C predicts mobility disability and changes in gait speed: the Framingham Offspring Study.
J Gerontol A Biol Sci Med Sci. 2014 Mar;69(3):301-7. doi: 10.1093/gerona/glt096. Epub 2013 Aug 2.
4
Role of muscle mass and muscle quality in the association between diabetes and gait speed.
Diabetes Care. 2012 Aug;35(8):1672-9. doi: 10.2337/dc11-2202. Epub 2012 May 17.
6
Walking while Talking in Older Adults with Chronic Kidney Disease.
Clin J Am Soc Nephrol. 2020 May 7;15(5):665-672. doi: 10.2215/CJN.12401019. Epub 2020 Mar 6.
8
Knee extension rate of torque development and peak torque: associations with lower extremity function.
J Cachexia Sarcopenia Muscle. 2018 Jun;9(3):530-539. doi: 10.1002/jcsm.12285. Epub 2018 Mar 23.
10

引用本文的文献

1
Review of Exercise Interventions to Improve Clinical Outcomes in Nondialysis CKD.
Kidney Int Rep. 2024 Aug 2;9(11):3097-3115. doi: 10.1016/j.ekir.2024.07.032. eCollection 2024 Nov.
3
Kidney Function and Physical Performance Decline: The Brain in Kidney Disease (BRINK) Cohort Study.
Kidney Med. 2023 Dec 5;6(2):100770. doi: 10.1016/j.xkme.2023.100770. eCollection 2024 Feb.
4
Current status and development trends in CKD with frailty research from 2000 to 2021: a bibliometric analysis.
Ren Fail. 2024 Dec;46(1):2292142. doi: 10.1080/0886022X.2023.2292142. Epub 2024 Jan 4.
6
Estimated GFR, Albuminuria, and Physical Function: The Brain in Kidney Disease (BRINK) Cohort Study.
Kidney Med. 2022 Aug 10;4(10):100531. doi: 10.1016/j.xkme.2022.100531. eCollection 2022 Oct.
7
Mobility and What Matters: Moving Kidney Care Toward the 4Ms of an Age-Friendly Health System.
Kidney Med. 2022 May 13;4(6):100481. doi: 10.1016/j.xkme.2022.100481. eCollection 2022 Jun.
9
Cell interactome in sarcopenia during aging.
J Cachexia Sarcopenia Muscle. 2022 Apr;13(2):919-931. doi: 10.1002/jcsm.12937. Epub 2022 Feb 17.
10
Indoxyl-Sulfate-Induced Redox Imbalance in Chronic Kidney Disease.
Antioxidants (Basel). 2021 Jun 9;10(6):936. doi: 10.3390/antiox10060936.

本文引用的文献

1
Kidney function and prevalent and incident frailty.
Clin J Am Soc Nephrol. 2013 Dec;8(12):2091-9. doi: 10.2215/CJN.02870313. Epub 2013 Oct 31.
2
Physical performance and frailty in chronic kidney disease.
Am J Nephrol. 2013;38(4):307-15. doi: 10.1159/000355568. Epub 2013 Oct 4.
3
Chronic kidney disease defined by cystatin C predicts mobility disability and changes in gait speed: the Framingham Offspring Study.
J Gerontol A Biol Sci Med Sci. 2014 Mar;69(3):301-7. doi: 10.1093/gerona/glt096. Epub 2013 Aug 2.
4
Muscle wasting from kidney failure-a model for catabolic conditions.
Int J Biochem Cell Biol. 2013 Oct;45(10):2230-8. doi: 10.1016/j.biocel.2013.06.027. Epub 2013 Jul 16.
5
Association between physical performance and all-cause mortality in CKD.
J Am Soc Nephrol. 2013 Apr;24(5):822-30. doi: 10.1681/ASN.2012070702. Epub 2013 Apr 18.
6
Associations between body composition and gait-speed decline: results from the Health, Aging, and Body Composition study.
Am J Clin Nutr. 2013 Mar;97(3):552-60. doi: 10.3945/ajcn.112.047860. Epub 2013 Jan 30.
7
A prospective study of frailty in nephrology-referred patients with CKD.
Am J Kidney Dis. 2012 Dec;60(6):912-21. doi: 10.1053/j.ajkd.2012.05.017. Epub 2012 Jul 7.
8
Estimating glomerular filtration rate from serum creatinine and cystatin C.
N Engl J Med. 2012 Jul 5;367(1):20-9. doi: 10.1056/NEJMoa1114248.
9
Calf muscle characteristics, strength measures, and mortality in peripheral arterial disease: a longitudinal study.
J Am Coll Cardiol. 2012 Mar 27;59(13):1159-67. doi: 10.1016/j.jacc.2011.12.019.
10
Absolute strength and loss of strength as predictors of mobility decline in older adults: the InCHIANTI study.
J Gerontol A Biol Sci Med Sci. 2012 Jan;67(1):66-73. doi: 10.1093/gerona/glr055. Epub 2011 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验