Prigozhin Daniil M, Krieger Inna V, Huizar John P, Mavrici Daniela, Waldo Geoffrey S, Hung Li-Wei, Sacchettini James C, Terwilliger Thomas C, Alber Tom
Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, California, 94720, United States of America.
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States of America; Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, 77843, United States of America.
PLoS One. 2014 Dec 31;9(12):e116249. doi: 10.1371/journal.pone.0116249. eCollection 2014.
Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.
β-内酰胺类抗生素作用于青霉素结合蛋白,其中包括几种对细菌细胞壁稳态至关重要的酶类。为了更好地了解病原体结核分枝杆菌中青霉素结合蛋白的功能和抑制剂结合特异性,我们对两种预测的D,D-羧肽酶Rv2911和Rv3330进行了结构和系统发育分析。使用定向进化和绿色荧光蛋白折叠报告方法对Rv2911进行结晶优化,得到了一种可溶性四重突变体。与非特异性抑制剂苯甲基磺酰氟结合的优化Rv2911和与美罗培南结合的Rv3330的结构表明,与非特异性抑制剂不同,美罗培南沿着保守表面与酶形成了广泛的相互作用。系统发育分析表明,Rv2911和Rv3330属于放线菌中出现的不同进化枝,在大肠杆菌和枯草芽孢杆菌等模式生物中不存在。尽管核心催化残基严格保守,但进化枝特异性适应使这些酶能够发挥不同的生理作用。特征差异包括潜在的蛋白质-蛋白质相互作用表面和围绕催化位点的特异性决定残基。总体而言,这些结构见解为开发改进的结核病β-内酰胺类治疗药物奠定了基础。