Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
Int J Mol Sci. 2019 Jul 2;20(13):3247. doi: 10.3390/ijms20133247.
, the pathogen responsible for tuberculosis (TB), is the leading cause of death from infectious disease worldwide. The class A serine β-lactamase BlaC confers resistance to conventional β-lactam antibiotics. As the primary mechanism of bacterial resistance to β-lactam antibiotics, the expression of a β-lactamase by results in hydrolysis of the β-lactam ring and deactivation of these antibiotics. In this study, we conducted protein X-ray crystallographic analysis of the inactivation of BlaC, upon exposure to the inhibitor bis(benzoyl) phosphate. Crystal structure data confirms that serine β-lactamase is phosphorylated at the catalytic serine residue (Ser-70) by this phosphate-based inactivator. This new crystallographic evidence suggests a mechanism for phosphorylation of BlaC inhibition by bis(benzoyl) phosphate over acylation. Additionally, we confirmed that bis(benzoyl) phosphate inactivated BlaC in a time-dependent manner.
结核分枝杆菌(TB)是导致全球传染病死亡的主要病原体。A 类丝氨酸β-内酰胺酶 BlaC 赋予了对传统β-内酰胺抗生素的耐药性。作为细菌对β-内酰胺抗生素耐药的主要机制,结核分枝杆菌表达β-内酰胺酶导致β-内酰胺环的水解和这些抗生素的失活。在这项研究中,我们对 BlaC 暴露于抑制剂双(苯甲酰基)磷酸酯时的失活进行了蛋白质 X 射线晶体学分析。晶体结构数据证实,该磷酸酯基失活剂将丝氨酸β-内酰胺酶在催化丝氨酸残基(Ser-70)处磷酸化。这一新的晶体学证据表明,双(苯甲酰基)磷酸酯通过酰化抑制 BlaC 的磷酸化机制。此外,我们还证实双(苯甲酰基)磷酸酯以时间依赖性方式使 BlaC 失活。