Wei Liu, Yuanyuan Han, Yanping Cai, Jiaojiao Jin, Guohua Hui
a Zhejiang Gongshang University, Food Microbiology Key Laboratory of Zhejiang Province ; Hangzhou, China.
Bioengineered. 2015;6(1):42-52. doi: 10.4161/21655979.2014.993294. Epub 2015 Jan 27.
In this paper, Penaeus orientolis prawn freshness rapid determination method using electronic nose (e-nose) and non-linear data processing technique is studied. E-nose responses to prawns stored at 4 °C are measured. Meanwhile, physical/chemical indexes (firmness, pH, total volatile basic nitrogen (TVB-N), total viable count (TVC), and human sensory evaluation) are examined to provide freshness references for e-nose analysis. E-nose measurement data is analyzed by principal component analysis (PCA), stochastic resonance (SR), and double-layered cascaded serial stochastic resonance (DCSSR). PCA partially discriminates prawns under different storage time. SR and DCSSR signal-to-noise ratio (SNR) spectrum eigen values discriminate prawns successfully. Multi-variables regressions (MVR) are conducted between physical/chemical indexes and SR/DCSSR output SNR minimal (SNR-Min) values. Results indicate that SNR-Min values present more significant linearity relation with physical/chemical indexes. Prawn freshness forecasting model is developed via Harris fitting regression on DCSSR SNR-Min values. Validating experiments demonstrate that forecasting accuracy of this model is 94.29%.
本文研究了利用电子鼻和非线性数据处理技术快速测定东方对虾新鲜度的方法。测量了电子鼻对4℃储存对虾的响应。同时,检测了物理/化学指标(硬度、pH值、总挥发性盐基氮(TVB-N)、总活菌数(TVC)和人体感官评价),为电子鼻分析提供新鲜度参考。通过主成分分析(PCA)、随机共振(SR)和双层级联串联随机共振(DCSSR)对电子鼻测量数据进行分析。PCA部分区分了不同储存时间的对虾。SR和DCSSR的信噪比(SNR)频谱特征值成功区分了对虾。在物理/化学指标与SR/DCSSR输出信噪比最小值(SNR-Min)之间进行多元回归(MVR)。结果表明,SNR-Min值与物理/化学指标呈现出更显著的线性关系。通过对DCSSR的SNR-Min值进行哈里斯拟合回归,建立了对虾新鲜度预测模型。验证实验表明,该模型的预测准确率为94.29%。