Suppr超能文献

基于电子鼻和非线性随机共振技术的东方对虾新鲜度快速测定方法

Penaeus orientolis prawn freshness rapid determination method based on electronic nose and non-linear stochastic resonance technique.

作者信息

Wei Liu, Yuanyuan Han, Yanping Cai, Jiaojiao Jin, Guohua Hui

机构信息

a Zhejiang Gongshang University, Food Microbiology Key Laboratory of Zhejiang Province ; Hangzhou, China.

出版信息

Bioengineered. 2015;6(1):42-52. doi: 10.4161/21655979.2014.993294. Epub 2015 Jan 27.

Abstract

In this paper, Penaeus orientolis prawn freshness rapid determination method using electronic nose (e-nose) and non-linear data processing technique is studied. E-nose responses to prawns stored at 4 °C are measured. Meanwhile, physical/chemical indexes (firmness, pH, total volatile basic nitrogen (TVB-N), total viable count (TVC), and human sensory evaluation) are examined to provide freshness references for e-nose analysis. E-nose measurement data is analyzed by principal component analysis (PCA), stochastic resonance (SR), and double-layered cascaded serial stochastic resonance (DCSSR). PCA partially discriminates prawns under different storage time. SR and DCSSR signal-to-noise ratio (SNR) spectrum eigen values discriminate prawns successfully. Multi-variables regressions (MVR) are conducted between physical/chemical indexes and SR/DCSSR output SNR minimal (SNR-Min) values. Results indicate that SNR-Min values present more significant linearity relation with physical/chemical indexes. Prawn freshness forecasting model is developed via Harris fitting regression on DCSSR SNR-Min values. Validating experiments demonstrate that forecasting accuracy of this model is 94.29%.

摘要

本文研究了利用电子鼻和非线性数据处理技术快速测定东方对虾新鲜度的方法。测量了电子鼻对4℃储存对虾的响应。同时,检测了物理/化学指标(硬度、pH值、总挥发性盐基氮(TVB-N)、总活菌数(TVC)和人体感官评价),为电子鼻分析提供新鲜度参考。通过主成分分析(PCA)、随机共振(SR)和双层级联串联随机共振(DCSSR)对电子鼻测量数据进行分析。PCA部分区分了不同储存时间的对虾。SR和DCSSR的信噪比(SNR)频谱特征值成功区分了对虾。在物理/化学指标与SR/DCSSR输出信噪比最小值(SNR-Min)之间进行多元回归(MVR)。结果表明,SNR-Min值与物理/化学指标呈现出更显著的线性关系。通过对DCSSR的SNR-Min值进行哈里斯拟合回归,建立了对虾新鲜度预测模型。验证实验表明,该模型的预测准确率为94.29%。

相似文献

2
Winter jujube (Zizyphus jujuba Mill.) quality forecasting method based on electronic nose.
Food Chem. 2015 Mar 1;170:484-91. doi: 10.1016/j.foodchem.2014.08.009. Epub 2014 Aug 19.
4
Kiwi fruit (Actinidia chinensis) quality determination based on surface acoustic wave resonator combined with electronic nose.
Bioengineered. 2015;6(1):53-61. doi: 10.1080/21655979.2014.996430. Epub 2015 Jan 27.
7
Prediction of egg freshness during storage using electronic nose.
Poult Sci. 2017 Oct 1;96(10):3733-3746. doi: 10.3382/ps/pex193.
9
Improvement of red color development on the surface of kuruma prawn Marsupenaeus japonicus under various conditions.
J Food Sci. 2014 Feb;79(2):E202-7. doi: 10.1111/1750-3841.12353. Epub 2014 Jan 23.
10
Monitoring of fresh-cut Valerianella locusta Laterr. shelf life by electronic nose and VIS-NIR spectroscopy.
Talanta. 2014 Mar;120:368-75. doi: 10.1016/j.talanta.2013.12.014. Epub 2013 Dec 18.

引用本文的文献

本文引用的文献

1
Winter jujube (Zizyphus jujuba Mill.) quality forecasting method based on electronic nose.
Food Chem. 2015 Mar 1;170:484-91. doi: 10.1016/j.foodchem.2014.08.009. Epub 2014 Aug 19.
2
Electrochemical impedance spectrum frequency optimization of bitter taste cell-based sensors.
Biosens Bioelectron. 2013 Sep 15;47:164-70. doi: 10.1016/j.bios.2013.03.018. Epub 2013 Mar 21.
3
Evaluation of sea bream (Sparus aurata) shelf life using an optoelectronic nose.
Food Chem. 2013 Jun 1;138(2-3):1374-80. doi: 10.1016/j.foodchem.2012.10.114. Epub 2012 Nov 12.
4
Sweet and bitter tastants specific detection by the taste cell-based sensor.
Biosens Bioelectron. 2012 May 15;35(1):429-438. doi: 10.1016/j.bios.2012.02.028. Epub 2012 Feb 24.
6
A 21st century technique for food control: electronic noses.
Anal Chim Acta. 2009 Apr 6;638(1):1-15. doi: 10.1016/j.aca.2009.02.009. Epub 2009 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验