Wang Kai, Cui Kehui, Liu Guoling, Xie Weibo, Yu Huihui, Pan Junfeng, Huang Jianliang, Nie Lixiao, Shah Farooq, Peng Shaobing
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
BMC Genet. 2014 Dec 31;15:155. doi: 10.1186/s12863-014-0155-y.
Soil phosphorus (P) deficiency is one of the major limiting factors to crop production. The development of crop varieties with improved P use efficiency (PUE) is an important strategy for sustainable agriculture. The objectives of this research were to identify quantitative trait loci (QTLs) linked to PUE traits using a high-density single nucleotide polymorphism (SNP) map and to estimate the epistatic interactions and environmental effects in rice (Oryza sativa L.).
We conducted a two-year field experiment under low and normal P conditions using a recombinant inbred population of rice derived from Zhenshan 97 and Minghui 63 (indica). We investigated three yield traits, biomass (BIOM), harvest index (HI), and grain yield (Yield), and eight PUE traits: total P uptake (PUP), P harvest index (PHI), grain P use efficiency (gPUE) based on P accumulation in grains, straw P use efficiency (strPUE) based on P accumulation in straw, P use efficiency for biomass (PUEb) and for grain yield (PUEg) based on P accumulation in the whole plant, P translocation (PT), and P translocation efficiency (PTE). Of the 36 QTLs and 24 epistatic interactions identified, 26 QTLs and 12 interactions were detected for PUE traits. The environment affected seven QTLs and three epistatic interactions. Four QTLs (qPHI1 and qPHI2 for PHI, qPUEg2 for PUEg, and qPTE8 for PTE) with strong effects were environmentally independent. By comparing our results with similar QTLs in previous studies, three QTLs for PUE traits (qPUP1 and qPUP10 for PUP, and qPHI6 for PHI) were found across various genetic backgrounds. Seven regions were shared by QTLs for yield and PUE traits.
Most QTLs linked to PUE traits were different from those linked to yield traits, suggesting different genetic controls underlying these two traits. Those chromosomal regions with large effects that are not affected by different environments are promising for improving P use efficiency. The seven regions shared by QTLs linked to yield and PUE traits imply the possibility of the simultaneous improvement of yield and PUE traits.
土壤磷(P)缺乏是作物生产的主要限制因素之一。培育磷利用效率(PUE)提高的作物品种是可持续农业的一项重要策略。本研究的目的是利用高密度单核苷酸多态性(SNP)图谱鉴定与PUE性状相关的数量性状位点(QTL),并估计水稻(Oryza sativa L.)中的上位性互作和环境效应。
我们使用来自珍汕97和明恢63(籼稻)的重组自交群体,在低磷和正常磷条件下进行了为期两年的田间试验。我们调查了三个产量性状,生物量(BIOM)、收获指数(HI)和籽粒产量(Yield),以及八个PUE性状:总磷吸收量(PUP)、磷收获指数(PHI)、基于籽粒中磷积累的籽粒磷利用效率(gPUE)、基于秸秆中磷积累的秸秆磷利用效率(strPUE)、基于全株磷积累的生物量磷利用效率(PUEb)和籽粒产量磷利用效率(PUEg)、磷转运(PT)和磷转运效率(PTE)。在鉴定出的36个QTL和24个上位性互作中,检测到26个与PUE性状相关的QTL和12个互作。环境影响了7个QTL和3个上位性互作。四个具有强效应的QTL(控制PHI的qPHI1和qPHI2、控制PUEg的qPUEg2和控制PTE的qPTE8)不受环境影响。通过将我们的结果与先前研究中类似的QTL进行比较,发现在不同遗传背景下存在三个与PUE性状相关的QTL(控制PUP的qPUP1和qPUP10,以及控制PHI的qPHI6)。产量和PUE性状的QTL共有七个区域。
大多数与PUE性状相关的QTL与产量性状相关的QTL不同,表明这两个性状受不同的遗传控制。那些不受不同环境影响的具有大效应的染色体区域有望提高磷利用效率。与产量和PUE性状相关的QTL共有的七个区域意味着同时提高产量和PUE性状的可能性。