Wagner Fabien B, Truccolo Wilson, Wang Jing, Nurmikko Arto V
Department of Neuroscience, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island;
Department of Neuroscience, Brown University, Providence, Rhode Island; Institute for Brain Science, Brown University, Providence, Rhode Island; and Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, Rhode Island.
J Neurophysiol. 2015 Apr 1;113(7):2321-41. doi: 10.1152/jn.01040.2014. Epub 2014 Dec 30.
Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger absence seizures. Most previous studies have been purely correlational, and it remains unclear whether epileptiform events induced by rhythmic stimulation (e.g., sensory/electrical) mimic actual spontaneous seizures, especially regarding their spatiotemporal dynamics. In this study, we used a novel combination of intracortical optogenetic stimulation and microelectrode array recordings in freely moving WAG/Rij rats, a model of absence epilepsy with a cortical focus in the somatosensory cortex (SI). We report three main findings: 1) Brief rhythmic bursting, evoked by optical stimulation of neocortical excitatory neurons at frequencies around 10 Hz, induced seizures consisting of self-sustained spike-wave discharges (SWDs) for about 10% of stimulation trials. The probability of inducing seizures was frequency-dependent, reaching a maximum at 10 Hz. 2) Local field potential power before stimulation and response amplitudes during stimulation both predicted seizure induction, demonstrating a modulatory effect of brain states and neural excitation levels. 3) Evoked responses during stimulation propagated as cortical waves, likely reaching the cortical focus, which in turn generated self-sustained SWDs after stimulation was terminated. Importantly, SWDs during induced and spontaneous seizures propagated with the same spatiotemporal dynamics. Our findings demonstrate that local rhythmic bursting of excitatory neurons in neocortex at particular frequencies, under susceptible ongoing brain states, is sufficient to trigger primary generalized seizures with stereotypical spatiotemporal dynamics.
向原发性全身性癫痫发作的转变在大脑中突然且同步地发生。其潜在触发因素仍然未知。我们使用光遗传学来因果性地检验这样一个假设,即局部新皮质区域中兴奋性神经元的节律性群体爆发能够迅速触发失神发作。此前的大多数研究都只是相关性的,目前尚不清楚由节律性刺激(如感觉/电刺激)诱发的癫痫样事件是否模拟了实际的自发性发作,尤其是在其时空动态方面。在本研究中,我们在自由活动的WAG/Rij大鼠(一种以体感皮层(SI)为皮质病灶的失神癫痫模型)中使用了皮质内光遗传学刺激和微电极阵列记录的新组合。我们报告了三个主要发现:1)通过以约10赫兹的频率对新皮质兴奋性神经元进行光刺激诱发的短暂节律性爆发,在约10%的刺激试验中诱发了由自持性棘波放电(SWD)组成的癫痫发作。诱发癫痫发作的概率与频率相关,在10赫兹时达到最大值。2)刺激前的局部场电位功率和刺激期间的反应幅度都能预测癫痫发作的诱发,表明脑状态和神经兴奋水平具有调节作用。3)刺激期间诱发的反应以皮质波的形式传播,可能到达皮质病灶,而皮质病灶在刺激终止后又会产生自持性SWD。重要的是,诱发癫痫发作和自发性癫痫发作期间的SWD以相同的时空动态传播。我们的研究结果表明,在易感的持续脑状态下,新皮质中特定频率的兴奋性神经元局部节律性爆发足以触发具有刻板时空动态的原发性全身性癫痫发作。