1 Aix Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France2 Inserm, UMR_S 1106, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
3 Department of Neurology, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Brain. 2014 Aug;137(Pt 8):2210-30. doi: 10.1093/brain/awu133. Epub 2014 Jun 11.
Seizures can occur spontaneously and in a recurrent manner, which defines epilepsy; or they can be induced in a normal brain under a variety of conditions in most neuronal networks and species from flies to humans. Such universality raises the possibility that invariant properties exist that characterize seizures under different physiological and pathological conditions. Here, we analysed seizure dynamics mathematically and established a taxonomy of seizures based on first principles. For the predominant seizure class we developed a generic model called Epileptor. As an experimental model system, we used ictal-like discharges induced in vitro in mouse hippocampi. We show that only five state variables linked by integral-differential equations are sufficient to describe the onset, time course and offset of ictal-like discharges as well as their recurrence. Two state variables are responsible for generating rapid discharges (fast time scale), two for spike and wave events (intermediate time scale) and one for the control of time course, including the alternation between 'normal' and ictal periods (slow time scale). We propose that normal and ictal activities coexist: a separatrix acts as a barrier (or seizure threshold) between these states. Seizure onset is reached upon the collision of normal brain trajectories with the separatrix. We show theoretically and experimentally how a system can be pushed toward seizure under a wide variety of conditions. Within our experimental model, the onset and offset of ictal-like discharges are well-defined mathematical events: a saddle-node and homoclinic bifurcation, respectively. These bifurcations necessitate a baseline shift at onset and a logarithmic scaling of interspike intervals at offset. These predictions were not only confirmed in our in vitro experiments, but also for focal seizures recorded in different syndromes, brain regions and species (humans and zebrafish). Finally, we identified several possible biophysical parameters contributing to the five state variables in our model system. We show that these parameters apply to specific experimental conditions and propose that there exists a wide array of possible biophysical mechanisms for seizure genesis, while preserving central invariant properties. Epileptor and the seizure taxonomy will guide future modeling and translational research by identifying universal rules governing the initiation and termination of seizures and predicting the conditions necessary for those transitions.
癫痫发作可以自发且反复发生,这定义了癫痫;或者在大多数神经元网络和从苍蝇到人类的物种中,在各种条件下可以在正常大脑中诱发。这种普遍性提出了这样一种可能性,即在不同的生理和病理条件下存在表征癫痫发作的不变特性。在这里,我们从数学上分析了癫痫发作动力学,并基于第一性原理建立了癫痫发作分类法。对于主要的癫痫发作类别,我们开发了一个称为 Epileptor 的通用模型。作为实验模型系统,我们使用了在体外诱导的小鼠海马的类似癫痫发作放电。我们表明,只有五个由积分微分方程联系的状态变量就足以描述类似癫痫发作放电的起始、时程和消退以及它们的复发。两个状态变量负责产生快速放电(快时间尺度),两个状态变量负责产生尖峰和波事件(中间时间尺度),一个状态变量负责控制时间过程,包括在“正常”和癫痫发作期之间的交替(慢时间尺度)。我们提出正常和癫痫发作活动共存:一个分离面作为这些状态之间的屏障(或癫痫发作阈值)。癫痫发作起始是在正常脑轨迹与分离面碰撞时达到的。我们从理论和实验上展示了在广泛的条件下,系统如何被推向癫痫发作。在我们的实验模型中,类似癫痫发作放电的起始和消退是明确的数学事件:分别是鞍结和同宿分岔。这些分岔在起始时需要基线偏移,在结束时需要尖峰间隔的对数缩放。这些预测不仅在我们的体外实验中得到了证实,而且在不同综合征、脑区和物种(人类和斑马鱼)记录的局灶性癫痫发作中也得到了证实。最后,我们确定了我们模型系统中五个状态变量的几个可能的生物物理参数。我们表明,这些参数适用于特定的实验条件,并提出存在广泛的可能的生物物理机制来引发癫痫发作,同时保留中央不变特性。Epileptor 和癫痫发作分类法将通过识别控制癫痫发作起始和终止的普遍规则并预测这些转变所需的条件,指导未来的建模和转化研究。