Suppr超能文献

AKSmooth:通过基于核的平滑处理增强低覆盖度亚硫酸氢盐测序数据

AKSmooth: enhancing low-coverage bisulfite sequencing data via kernel-based smoothing.

作者信息

Chen Junfang, Lutsik Pavlo, Akulenko Ruslan, Walter Jörn, Helms Volkhard

机构信息

Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany , Department of Genetics, Saarland University, Saarbrücken 66123, Germany.

出版信息

J Bioinform Comput Biol. 2014 Dec;12(6):1442005. doi: 10.1142/S0219720014420050.

Abstract

Whole-genome bisulfite sequencing (WGBS) is an approach of growing importance. It is the only approach that provides a comprehensive picture of the genome-wide DNA methylation profile. However, obtaining a sufficient amount of genome and read coverage typically requires high sequencing costs. Bioinformatics tools can reduce this cost burden by improving the quality of sequencing data. We have developed a statistical method Ajusted Local Kernel Smoother (AKSmooth) that can accurately and efficiently reconstruct the single CpG methylation estimate across the entire methylome using low-coverage bisulfite sequencing (Bi-Seq) data. We demonstrate the AKSmooth performance on the low-coverage (~ 4 ×) DNA methylation profiles of three human colon cancer samples and matched controls. Under the best set of parameters, AKSmooth-curated data showed high concordance with the gold standard high-coverage sample (Pearson 0.90), outperforming the popular analogous method. In addition, AKSmooth showed computational efficiency with runtime benchmark over 4.5 times better than the reference tool. To summarize, AKSmooth is a simple and efficient tool that can provide an accurate human colon methylome estimation profile from low-coverage WGBS data. The proposed method is implemented in R and is available at https://github.com/Junfang/AKSmooth.

摘要

全基因组亚硫酸氢盐测序(WGBS)是一种越来越重要的方法。它是唯一能提供全基因组DNA甲基化图谱全面信息的方法。然而,获得足够量的基因组和读取覆盖率通常需要高昂的测序成本。生物信息学工具可以通过提高测序数据质量来减轻这种成本负担。我们开发了一种统计方法——调整后的局部核平滑器(AKSmooth),它可以使用低覆盖率亚硫酸氢盐测序(Bi-Seq)数据准确、高效地重建整个甲基化组中单个CpG的甲基化估计值。我们在三个人类结肠癌样本及其匹配对照的低覆盖率(约4×)DNA甲基化图谱上展示了AKSmooth的性能。在最佳参数设置下,AKSmooth整理的数据与金标准高覆盖率样本高度一致(皮尔逊相关系数为0.90),优于流行的类似方法。此外,AKSmooth在计算效率方面表现出色,运行时基准比参考工具快4.5倍以上。总之,AKSmooth是一种简单高效的工具,能够从低覆盖率WGBS数据中提供准确的人类结肠甲基化组估计图谱。该方法用R语言实现,可在https://github.com/Junfang/AKSmooth获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验