Nandan Mauparna, Hens C R, Pal Pinaki, Dana Syamal K
Dr. B. C. Roy Engineering College, Durgapur 713206, India.
CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India.
Chaos. 2014 Dec;24(4):043103. doi: 10.1063/1.4897446.
We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.
我们报告了在全局耦合的相同振子网络中从均匀稳态(HSS)到非均匀稳态(IHSSs)的转变。我们用一些局部负或排斥平均场链接扰动网络中同步的振子群体。对于一定数量的排斥平均场链接和一定范围的耦合强度,整个群体分裂成两个簇。随着相互作用强度的进一步增加,这些簇坍缩成一个HSS,随后转变为IHSSs,此时所有振子占据两个稳定稳态中的一个。我们使用对模型网络的还原论方法,分析确定了HSS的起源及其与排斥平均场链接数量和相互作用强度相关的向IHSS的转变。我们用典型的Landau-Stuart极限环系统和混沌Rössler振子作为动力学节点的数值例子验证了结果。在从HSS到IHSSs的转变过程中,网络根据系统动力学遵循图灵型对称破缺叉形或跨临界分岔。