Dixit Shiva, Asir M Paul, Dev Shrimali Manish
Department of Physics, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305 817, India.
Chaos. 2020 Dec;30(12):123112. doi: 10.1063/5.0026968.
We study the dynamical inactivity of the global network of identical oscillators in the presence of mixed attractive and repulsive coupling. We consider that the oscillators are a priori in all to all attractive coupling and then upon increasing the number of oscillators interacting via repulsive interaction, the whole network attains a steady state at a critical fraction of repulsive nodes, p. The macroscopic inactivity of the network is found to follow a typical aging transition due to competition between attractive-repulsive interactions. The analytical expression connecting the coupling strength and p is deduced and corroborated with numerical outcomes. We also study the influence of asymmetry in the attractive-repulsive interaction, which leads to symmetry breaking. We detect chimera-like and mixed states for a certain ratio of coupling strengths. We have verified sequential and random modes to choose the repulsive nodes and found that the results are in agreement. The paradigmatic networks with diverse dynamics, viz., limit cycle (Stuart-Landau), chaos (Rössler), and bursting (Hindmarsh-Rose neuron), are analyzed.
我们研究了在存在混合吸引和排斥耦合的情况下,相同振子全局网络的动态不活动状态。我们认为振子最初处于全对全的吸引耦合状态,然后随着通过排斥相互作用相互作用的振子数量增加,整个网络在排斥节点的临界比例(p)处达到稳态。发现网络的宏观不活动状态由于吸引 - 排斥相互作用之间的竞争而遵循典型的老化转变。推导了连接耦合强度和(p)的解析表达式,并通过数值结果进行了验证。我们还研究了吸引 - 排斥相互作用中的不对称性的影响,这会导致对称性破缺。对于一定比例的耦合强度,我们检测到了类似奇异子和混合状态。我们验证了选择排斥节点的顺序模式和随机模式,发现结果是一致的。分析了具有不同动力学的典型网络,即极限环(斯图尔特 - 兰道)、混沌(罗斯勒)和爆发(欣德马什 - 罗斯神经元)。