Piras Vincent, Selvarajoo Kumar
Institute for Advanced Biosciences, Keio University, 14-1 Baba-cho, 997-0035 Tsuruoka, Japan; Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, 252-0882 Fujisawa, Japan.
Institute for Advanced Biosciences, Keio University, 14-1 Baba-cho, 997-0035 Tsuruoka, Japan; Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, 252-0882 Fujisawa, Japan.
Genomics. 2015 Mar;105(3):137-44. doi: 10.1016/j.ygeno.2014.12.007. Epub 2014 Dec 29.
Recent studies on single cells and population transcriptomics have revealed striking differences in global gene expression distributions. Single cells display highly variable expressions between cells, while cell populations present deterministic global patterns. The mechanisms governing the reduction of transcriptome-wide variability over cell ensemble size, however, remain largely unknown. To investigate transcriptome-wide variability of single cells to different sizes of cell populations, we examined RNA-Seq datasets of 6 mammalian cell types. Our statistical analyses show, for each cell type, increasing cell ensemble size reduces scatter in transcriptome-wide expressions and noise (variance over square mean) values, with corresponding increases in Pearson and Spearman correlations. Next, accounting for technical variability by the removal of lowly expressed transcripts, we demonstrate that transcriptome-wide variability reduces, approximating the law of large numbers. Subsequent analyses reveal that the entire gene expressions of cell populations and only the highly expressed portion of single cells are Gaussian distributed, following the central limit theorem.
近期关于单细胞和群体转录组学的研究揭示了全球基因表达分布的显著差异。单细胞在细胞间表现出高度可变的表达,而细胞群体呈现出确定性的全局模式。然而,控制转录组范围内变异性随细胞集合大小减少的机制在很大程度上仍然未知。为了研究单细胞转录组对不同大小细胞群体的变异性,我们检查了6种哺乳动物细胞类型的RNA-Seq数据集。我们的统计分析表明,对于每种细胞类型,增加细胞集合大小会减少转录组范围内表达的离散度和噪声(方差与平方均值之比)值,同时皮尔逊和斯皮尔曼相关性相应增加。接下来,通过去除低表达转录本来考虑技术变异性,我们证明转录组范围内的变异性会降低,近似于大数定律。后续分析表明,细胞群体的整个基因表达以及仅单细胞的高表达部分遵循中心极限定理呈高斯分布。