Garay József, Varga Zoltán, Gámez Manuel, Cabello Tomás
Research Group of Theoretical Biology and Ecology of Hungarian Academy of Sciences and Department of Plant Systematics, Ecology and Theoretical Biology, L. Eötvös University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary.
Institute of Mathematics and Informatics, Szent István University, Páter K. u. 1., H-2103 Gödöllő, Hungary.
J Theor Biol. 2015 Mar 7;368:74-82. doi: 10.1016/j.jtbi.2014.12.012. Epub 2014 Dec 31.
The classical Holling type II functional response, describing the per capita predation as a function of prey density, was modified by Beddington and de Angelis to include interference of predators that increases with predator density and decreases the number of killed prey. In the present paper we further generalize the Beddington-de Angelis functional response, considering that all predator activities (searching and handling prey, fight and recovery) have time duration, the probabilities of predator activities depend on the encounter probabilities, and hence on the prey and predator abundance, too. Under these conditions, the aim of the study is to introduce a functional response for fighting the predator and to analyse the corresponding dynamics, when predator-predator-prey encounters also occur. From this general approach, the Holling type functional responses can also be obtained as particular cases. In terms of the activity distribution, we give biologically interpretable sufficient conditions for stable coexistence. We consider two-individual (predator-prey) and three-individual (predator-predator-prey) encounters. In the three-individual encounter model there is a relatively higher fighting rate and a lower killing rate. Using numerical simulation, we surprisingly found that when the intrinsic prey growth rate and the conversion rate are small enough, the equilibrium predator abundance is higher in the three-individual encounter case. The above means that, when the equilibrium abundance of the predator is small, coexistence appears first in the three-individual encounter model.
经典的Holling II型功能反应描述了人均捕食量作为猎物密度的函数,Beddington和de Angelis对其进行了修正,以纳入随着捕食者密度增加而增加并减少被捕食猎物数量的捕食者干扰。在本文中,我们进一步推广了Beddington-de Angelis功能反应,考虑到所有捕食者活动(搜索和处理猎物、战斗和恢复)都有持续时间,捕食者活动的概率取决于相遇概率,因此也取决于猎物和捕食者的丰度。在这些条件下,研究的目的是引入一种用于对抗捕食者的功能反应,并分析当捕食者-捕食者-猎物相遇也发生时的相应动态。从这种一般方法中,Holling型功能反应也可以作为特殊情况得到。就活动分布而言,我们给出了稳定共存的具有生物学可解释性的充分条件。我们考虑两个个体(捕食者-猎物)和三个个体(捕食者-捕食者-猎物)的相遇。在三个个体相遇模型中,有相对较高的战斗率和较低的捕杀率。通过数值模拟,我们惊人地发现,当猎物的内在增长率和转化率足够小时,在三个个体相遇的情况下,捕食者的平衡丰度更高。上述情况意味着,当捕食者的平衡丰度较小时,共存首先出现在三个个体相遇模型中。