Suppr超能文献

时间限制下矩阵博弈中的ESS与复制者方程

The ESS and replicator equation in matrix games under time constraints.

作者信息

Garay József, Cressman Ross, Móri Tamás F, Varga Tamás

机构信息

MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group and Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.

MTA Centre for Ecological Research, Evolutionary Systems Research Group, Klebelsberg Kuno utca 3, Tihany, 8237, Hungary.

出版信息

J Math Biol. 2018 Jun;76(7):1951-1973. doi: 10.1007/s00285-018-1207-0. Epub 2018 Jan 13.

Abstract

Recently, we introduced the class of matrix games under time constraints and characterized the concept of (monomorphic) evolutionarily stable strategy (ESS) in them. We are now interested in how the ESS is related to the existence and stability of equilibria for polymorphic populations. We point out that, although the ESS may no longer be a polymorphic equilibrium, there is a connection between them. Specifically, the polymorphic state at which the average strategy of the active individuals in the population is equal to the ESS is an equilibrium of the polymorphic model. Moreover, in the case when there are only two pure strategies, a polymorphic equilibrium is locally asymptotically stable under the replicator equation for the pure-strategy polymorphic model if and only if it corresponds to an ESS. Finally, we prove that a strict Nash equilibrium is a pure-strategy ESS that is a locally asymptotically stable equilibrium of the replicator equation in n-strategy time-constrained matrix games.

摘要

最近,我们引入了时间约束下的矩阵博弈类别,并刻画了其中(单态)进化稳定策略(ESS)的概念。我们现在感兴趣的是ESS与多态群体均衡的存在性和稳定性之间的关系。我们指出,尽管ESS可能不再是多态均衡,但它们之间存在联系。具体而言,群体中活跃个体的平均策略等于ESS的多态状态是多态模型的一个均衡。此外,在只有两种纯策略的情况下,当且仅当纯策略多态模型的多态均衡对应于一个ESS时,它在复制者方程下是局部渐近稳定的。最后,我们证明了严格纳什均衡是n策略时间约束矩阵博弈中复制者方程的局部渐近稳定均衡的纯策略ESS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验