Suppr超能文献

新型富锂层状氧化物Li3MRuO5(M = Mn,Fe)的氧参与电化学

Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe).

作者信息

Laha S, Natarajan S, Gopalakrishnan J, Morán E, Sáez-Puche R, Alario-Franco M Á, Dos Santos-Garcia A J, Pérez-Flores J C, Kuhn A, García-Alvarado F

机构信息

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.

出版信息

Phys Chem Chem Phys. 2015 Feb 7;17(5):3749-60. doi: 10.1039/c4cp05052e. Epub 2015 Jan 5.

Abstract

We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R3[combining macron]m) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn(3+) and low spin configuration for Ru(4+) where the itinerant electrons occupy a π*-band. The onset of a net maximum in the χ vs. T plot at 9.5 K and the negative value of the Weiss constant (θ) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn(3+) and Ru(4+) are partially oxidized to Mn(4+) and Ru(5+) in the sloping region at low voltage, while in the long plateau, O(2-) is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to cycle acceptably even with the participation of the O(2-) ligand in the reversible redox processes. In the Li3FeRuO5 oxide, the oxidation process appears to affect only Ru (4+ to 5+ in the sloping region) and O(2-) (plateau) while Fe seems to retain its 3+ state.

摘要

我们描述了两种新型富锂层状氧化物Li3MRuO5(M = Mn,Fe)的合成、晶体结构及锂脱嵌-嵌入电化学性质,它们与基于岩盐结构的Li2MnO3和LiCoO2相关。Li3MnRuO5氧化物采用与Li2MnO3(C2/m)相关的结构,其中Li层和(Li0.2Mn0.4Ru0.4)层沿c轴交替排列,而Li3FeRuO5氧化物采用近乎完美的LiCoO2(R3[combining macron]m)结构,其中Li层和(Li0.2Fe0.4Ru0.4)层交替堆叠。磁性测量表明,对于Li3MnRuO5,存在Mn(3+)且Ru(4+)为低自旋构型,巡游电子占据一个π*带。χ对T曲线在9.5 K处出现净最大值的起始点以及-31.4 K的魏斯常数(θ)负值表明,根据不同途径存在反铁磁超交换相互作用。锂电化学性质表明,这两种氧化物表现出相似的行为,且与典型的富锂层状氧化物行为相关,在典型行为中通常会发现氧化物离子参与电化学过程。对于Li3MnRuO5和Li3FeRuO5,分别观察到较长的首次充电过程,容量分别为240 mA h g(-1)(每化学式单元2.3个Li)和144 mA h g(-1)(每化学式单元1.38个Li)。初始倾斜区域(开路电压至约4.1 V)之后是一个长平台期(约4.3 V)。进一步的充放电循环表明部分可逆性(Mn和Fe分别约为160 mA h g(-1)和45 mA h g(-1))。然而,仅经过几个循环后,就观察到电池失效。对原始的和电化学氧化后的Li3MRuO5进行X射线光电子能谱(XPS)表征发现,在Li3MnRuO5氧化物中,在低电压倾斜区域,Mn(3+)和Ru(4+)部分氧化为Mn(4+)和Ru(5+),而在长平台期,O(2-)也被氧化。可能发生了氧释放,这可能是循环过程中电池失效的原因。有趣的是,据报道,一些其他富锂层状氧化物即使在可逆氧化还原过程中有O(2-)配体参与,也能实现可接受的循环。在Li3FeRuO5氧化物中,氧化过程似乎仅影响Ru(在倾斜区域从4+变为5+)和O(2-)(平台期),而Fe似乎保持其3+状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验