Suppr超能文献

不确定性下逆问题的随机降阶模型

Stochastic reduced order models for inverse problems under uncertainty.

作者信息

Warner James E, Aquino Wilkins, Grigoriu Mircea D

机构信息

School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850 USA.

Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708 USA.

出版信息

Comput Methods Appl Mech Eng. 2015 Mar 1;285:488-514. doi: 10.1016/j.cma.2014.11.021.

Abstract

This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well.

摘要

这项工作提出了一种使用随机降阶模型(SROM)解决不确定性下反问题的新方法。给定系统中观测状态变量的统计信息,通过求解模型约束的随机优化问题,概率性地估计未知参数。所提出框架的出发点和关键在于使用SROM来表示随机量——对连续随机元素的低维离散近似,它允许高效且非侵入式的随机计算。用SROM表征不确定性将随机优化问题转化为确定性问题。SROM的非侵入性便于对随机向量未知量进行高效梯度计算,并且完全依赖于对现有确定性求解器的调用。此外,在状态变量数据、系统参数和边界条件均被视为随机的情况下,该方法可自然扩展以处理多种不确定性来源。新的且广泛适用的SROM框架针对一般随机优化问题,根据抽象目标函数和约束模型来制定。然而,为了演示目的,我们研究它在弹性动力学中随机材料参数反识别的特定情况下的性能。我们展示了以材料位移统计作为输入数据时,有效恢复随机剪切模量的能力。我们还表明,对于问题中的载荷也是随机的情况,该方法仍然有效。

相似文献

1
Stochastic reduced order models for inverse problems under uncertainty.不确定性下逆问题的随机降阶模型
Comput Methods Appl Mech Eng. 2015 Mar 1;285:488-514. doi: 10.1016/j.cma.2014.11.021.
10
Stochastic matching problem.随机匹配问题。
Phys Rev Lett. 2011 May 13;106(19):190601. doi: 10.1103/PhysRevLett.106.190601. Epub 2011 May 9.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验