Suppr超能文献

维生素D受体,皮肤中的一种肿瘤抑制因子。

Vitamin D receptor, a tumor suppressor in skin.

作者信息

Bikle Daniel D

机构信息

VA Medical Center and University of California San Francisco, 1700 Owens Street, Room 373, San Francisco, CA 94158, USA.

出版信息

Can J Physiol Pharmacol. 2015 May;93(5):349-54. doi: 10.1139/cjpp-2014-0367. Epub 2014 Dec 8.

Abstract

Vitamin D and calcium are well-established regulators of keratinocyte proliferation and differentiation. Therefore, it was not a great surprise that deletion of the vitamin D receptor (VDR) should predispose the skin to tumor formation, and that the combination of deleting both the VDR and calcium sensing receptor (CaSR) should be especially pro-oncogenic. In this review I have examined 4 mechanisms that appear to underlie the means by which VDR acts as a tumor suppressor in skin. First, DNA damage repair is curtailed in the absence of the VDR, allowing mutations in DNA to accumulate. Second and third involve the increased activation of the hedgehog and β-catenin pathways in the epidermis in the absence of the VDR, leading to poorly regulated proliferation with reduced differentiation. Finally, VDR deletion leads to a shift in the expression of long noncoding RNAs toward a more oncogenic profile. How these different mechanisms interact and their relative importance in the predisposition of the VDR null epidermis to tumor formation remain under active investigation.

摘要

维生素D和钙是角质形成细胞增殖和分化的既定调节因子。因此,维生素D受体(VDR)缺失会使皮肤易患肿瘤,而同时缺失VDR和钙敏感受体(CaSR)会特别促癌,这并不令人十分惊讶。在这篇综述中,我研究了VDR在皮肤中作为肿瘤抑制因子发挥作用的4种潜在机制。首先,在没有VDR的情况下,DNA损伤修复受到抑制,导致DNA中的突变积累。第二和第三种机制涉及在没有VDR的情况下,表皮中刺猬信号通路和β-连环蛋白通路的激活增加,导致增殖调控不良且分化减少。最后,VDR缺失导致长链非编码RNA的表达向更具致癌性的方向转变。这些不同机制如何相互作用以及它们在VDR缺失的表皮易患肿瘤形成中的相对重要性仍在积极研究中。

相似文献

1
Vitamin D receptor, a tumor suppressor in skin.
Can J Physiol Pharmacol. 2015 May;93(5):349-54. doi: 10.1139/cjpp-2014-0367. Epub 2014 Dec 8.
2
The Vitamin D Receptor as Tumor Suppressor in Skin.
Adv Exp Med Biol. 2020;1268:285-306. doi: 10.1007/978-3-030-46227-7_14.
3
4
The vitamin D receptor: a tumor suppressor in skin.
Adv Exp Med Biol. 2014;810:282-302. doi: 10.21236/ada614241.
5
Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer.
J Steroid Biochem Mol Biol. 2015 Apr;148:47-51. doi: 10.1016/j.jsbmb.2014.10.017. Epub 2014 Oct 31.
6
Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond.
Mol Cell Endocrinol. 2017 Sep 15;453:96-102. doi: 10.1016/j.mce.2017.05.001. Epub 2017 May 16.
7
8
1α,25(OH)2-dihydroxyvitamin D3/VDR protects the skin from UVB-induced tumor formation by interacting with the β-catenin pathway.
J Steroid Biochem Mol Biol. 2013 Jul;136:229-32. doi: 10.1016/j.jsbmb.2012.09.024. Epub 2012 Sep 28.
9
Reciprocal role of vitamin D receptor on β-catenin regulated keratinocyte proliferation and differentiation.
J Steroid Biochem Mol Biol. 2014 Oct;144 Pt A:237-41. doi: 10.1016/j.jsbmb.2013.11.002. Epub 2013 Nov 12.
10
Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer.
Front Physiol. 2016 Jul 12;7:296. doi: 10.3389/fphys.2016.00296. eCollection 2016.

引用本文的文献

1
Biological Effects of CYP11A1-Derived Vitamin D and Lumisterol Metabolites in the Skin.
J Invest Dermatol. 2024 Oct;144(10):2145-2161. doi: 10.1016/j.jid.2024.04.022. Epub 2024 Jul 12.
2
Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling.
Cancers (Basel). 2024 Jun 18;16(12):2262. doi: 10.3390/cancers16122262.
3
Dissection of an impact of VDR and RXRA on the genomic activity of 1,25(OH)D in A431 squamous cell carcinoma.
Mol Cell Endocrinol. 2024 Mar 1;582:112124. doi: 10.1016/j.mce.2023.112124. Epub 2023 Dec 19.
4
Vitamin D and Skin Cancer: An Epidemiological, Patient-Centered Update and Review.
Nutrients. 2021 Nov 28;13(12):4292. doi: 10.3390/nu13124292.
5
6
The Role of the Vitamin D Receptor in the Pathogenesis, Prognosis, and Treatment of Cutaneous Melanoma.
Front Oncol. 2021 Oct 6;11:743667. doi: 10.3389/fonc.2021.743667. eCollection 2021.
8
Cholecalciferol or Calcifediol in the Management of Vitamin D Deficiency.
Nutrients. 2020 May 31;12(6):1617. doi: 10.3390/nu12061617.
9
Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives.
Cell Biochem Biophys. 2020 Jun;78(2):165-180. doi: 10.1007/s12013-020-00913-6. Epub 2020 May 22.
10
On the relationship between VDR, RORα and RORγ receptors expression and HIF1-α levels in human melanomas.
Exp Dermatol. 2019 Sep;28(9):1036-1043. doi: 10.1111/exd.14002. Epub 2019 Aug 8.

本文引用的文献

1
Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer.
J Steroid Biochem Mol Biol. 2015 Apr;148:47-51. doi: 10.1016/j.jsbmb.2014.10.017. Epub 2014 Oct 31.
3
RNA SHAPE analysis in living cells.
Nat Chem Biol. 2013 Jan;9(1):18-20. doi: 10.1038/nchembio.1131. Epub 2012 Nov 25.
4
Calcium regulation of keratinocyte differentiation.
Expert Rev Endocrinol Metab. 2012 Jul;7(4):461-472. doi: 10.1586/eem.12.34.
5
1α,25(OH)2-dihydroxyvitamin D3/VDR protects the skin from UVB-induced tumor formation by interacting with the β-catenin pathway.
J Steroid Biochem Mol Biol. 2013 Jul;136:229-32. doi: 10.1016/j.jsbmb.2012.09.024. Epub 2012 Sep 28.
6
The hallmarks of cancer: a long non-coding RNA point of view.
RNA Biol. 2012 Jun;9(6):703-19. doi: 10.4161/rna.20481. Epub 2012 Jun 1.
7
Ablation of the calcium-sensing receptor in keratinocytes impairs epidermal differentiation and barrier function.
J Invest Dermatol. 2012 Oct;132(10):2350-2359. doi: 10.1038/jid.2012.159. Epub 2012 May 24.
8
Vitamin D receptor mediates DNA repair and is UV inducible in intact epidermis but not in cultured keratinocytes.
J Invest Dermatol. 2012 Aug;132(8):2097-100. doi: 10.1038/jid.2012.107. Epub 2012 Apr 12.
9
The role of the vitamin D receptor and ERp57 in photoprotection by 1α,25-dihydroxyvitamin D3.
Mol Endocrinol. 2012 Apr;26(4):574-82. doi: 10.1210/me.2011-1161. Epub 2012 Feb 9.
10
Long Noncoding RNAs: Insights from Biological Features and Functions to Diseases.
Med Res Rev. 2013 May;33(3):517-53. doi: 10.1002/med.21254. Epub 2012 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验