Laranjeira Paula, Pedrosa Monia, Pedreiro Susana, Gomes Joana, Martinho Antonio, Antunes Brigida, Ribeiro Tania, Santos Francisco, Trindade Helder, Paiva Artur
Blood and Transplantation Center of Coimbra, Portuguese Institute of the Blood and Transplantation, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861, Coimbra, Portugal.
Signal Transduction Laboratory, Center of Cellular Biology, SACS and Departament of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
Stem Cell Res Ther. 2015 Jan 5;6(1):3. doi: 10.1186/scrt537.
The different distribution of T cells among activation/differentiation stages in immune disorders may condition the outcome of mesenchymal stromal cell (MSC)-based therapies. Indeed, the effect of MSCs in the different functional compartments of T cells is not completely elucidated.
We investigated the effect of human bone marrow MSCs on naturally occurring peripheral blood functional compartments of CD4(+) and CD8(+) T cells: naive, central memory, effector memory, and effector compartments. For that, mononuclear cells (MNCs) stimulated with phorbol myristate acetate (PMA) plus ionomycin were cultured in the absence/presence of MSCs. The percentage of cells expressing tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), and interleukin-2 (IL-2), IL-17, IL-9, and IL-6 and the amount of cytokine produced were assessed by flow cytometry. mRNA levels of IL-4, IL-10, transforming growth factor-beta (TGF-β), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) in purified CD4(+) and CD8(+) T cells, and phenotypic and mRNA expression changes induced by PMA + ionomycin stimulation in MSCs, were also evaluated.
MSCs induced the reduction of the percentage of CD4(+) and CD8(+) T cells producing TNF-α, IFNγ, and IL-2 in all functional compartments, except for naive IFNγ(+)CD4(+) T cells. This inhibitory effect differentially affected CD4(+) and CD8(+) T cells as well as the T-cell functional compartments; remarkably, different cytokines showed distinct patterns of inhibition regarding both the percentage of producing cells and the amount of cytokine produced. Likewise, the percentages of IL-17(+), IL-17(+)TNF-α(+), and IL-9(+) within CD4(+) and CD8(+) T cells and of IL-6(+)CD4(+) T cells were decreased in MNC-MSC co-cultures. MSCs decreased IL-10 and increased IL-4 mRNA expression in stimulated CD4(+) and CD8(+) T cells, whereas TGF-β was reduced in CD8(+) and augmented in CD4(+) T cells, with no changes for CTLA4. Finally, PMA + ionomycin stimulation did not induce significant alterations on MSCs phenotype but did increase indoleamine-2,3-dioxygenase (IDO), inducible costimulatory ligand (ICOSL), IL-1β, IL-8, and TNF-α mRNA expression.
Overall, our study showed that MSCs differentially regulate the functional compartments of CD4(+) and CD8(+) T cells, which may differentially impact their therapeutic effect in immune disorders. Furthermore, the influence of MSCs on IL-9 expression can open new possibilities for MSC-based therapy in allergic diseases.
免疫紊乱中T细胞在激活/分化阶段的不同分布可能会影响基于间充质基质细胞(MSC)疗法的结果。事实上,MSC对T细胞不同功能亚群的作用尚未完全阐明。
我们研究了人骨髓MSC对CD4(+)和CD8(+) T细胞天然存在的外周血功能亚群的影响:初始、中枢记忆、效应记忆和效应亚群。为此,用佛波酯(PMA)加离子霉素刺激的单核细胞(MNC)在有无MSC的情况下进行培养。通过流式细胞术评估表达肿瘤坏死因子-α(TNF-α)、干扰素-γ(IFNγ)、白细胞介素-2(IL-2)、IL-17、IL-9和IL-6的细胞百分比以及产生的细胞因子量。还评估了纯化的CD4(+)和CD8(+) T细胞中IL-4、IL-10、转化生长因子-β(TGF-β)和细胞毒性T淋巴细胞相关蛋白4(CTLA4)的mRNA水平,以及PMA +离子霉素刺激对MSC诱导的表型和mRNA表达变化。
除初始IFNγ(+)CD4(+) T细胞外,MSC诱导所有功能亚群中产生TNF-α、IFNγ和IL-2的CD4(+)和CD8(+) T细胞百分比降低。这种抑制作用对CD4(+)和CD8(+) T细胞以及T细胞功能亚群有不同影响;值得注意的是,不同细胞因子在产生细胞百分比和产生的细胞因子量方面表现出不同的抑制模式。同样,在MNC-MSC共培养中,CD4(+)和CD8(+) T细胞内IL-17(+)、IL-17(+)TNF-α(+)和IL-9(+)以及IL-6(+)CD4(+) T细胞的百分比降低。MSC降低了刺激的CD4(+)和CD8(+) T细胞中IL-10的表达并增加了IL-4的mRNA表达,而TGF-β在CD8(+) T细胞中降低,在CD4(+) T细胞中增加,CTLA4无变化。最后,PMA +离子霉素刺激未引起MSC表型的显著改变,但确实增加了吲哚胺-2,3-双加氧酶(IDO)、诱导性共刺激配体(ICOSL)、IL-1β、IL-8和TNF-α的mRNA表达。
总体而言,我们的研究表明,MSC对CD4(+)和CD8(+) T细胞的功能亚群有不同的调节作用,这可能对它们在免疫紊乱中的治疗效果产生不同影响。此外,MSC对IL-9表达的影响为基于MSC的过敏性疾病治疗开辟了新的可能性。