Suppr超能文献

相似文献

3
Evolution of function in protein superfamilies, from a structural perspective.
J Mol Biol. 2001 Apr 6;307(4):1113-43. doi: 10.1006/jmbi.2001.4513.
4
Progress of structural genomics initiatives: an analysis of solved target structures.
J Mol Biol. 2005 May 20;348(5):1235-60. doi: 10.1016/j.jmb.2005.03.037. Epub 2005 Apr 2.
5
Structural diversity of domain superfamilies in the CATH database.
J Mol Biol. 2006 Jul 14;360(3):725-41. doi: 10.1016/j.jmb.2006.05.035. Epub 2006 Jun 2.
9
The CATH classification revisited--architectures reviewed and new ways to characterize structural divergence in superfamilies.
Nucleic Acids Res. 2009 Jan;37(Database issue):D310-4. doi: 10.1093/nar/gkn877. Epub 2008 Nov 7.

引用本文的文献

1
A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases.
Biochemistry. 2019 Mar 26;58(12):1627-1647. doi: 10.1021/acs.biochem.9b00044. Epub 2019 Mar 7.
2
Exploring general-purpose protein features for distinguishing enzymes and non-enzymes within the twilight zone.
BMC Bioinformatics. 2017 Jul 21;18(1):349. doi: 10.1186/s12859-017-1758-x.

本文引用的文献

1
The robustness and innovability of protein folds.
Curr Opin Struct Biol. 2014 Jun;26:131-8. doi: 10.1016/j.sbi.2014.06.007. Epub 2014 Jul 17.
2
The evolution of enzyme function in the isomerases.
Curr Opin Struct Biol. 2014 Jun;26:121-30. doi: 10.1016/j.sbi.2014.06.002. Epub 2014 Jul 5.
3
Leveraging structure for enzyme function prediction: methods, opportunities, and challenges.
Trends Biochem Sci. 2014 Aug;39(8):363-71. doi: 10.1016/j.tibs.2014.05.006. Epub 2014 Jul 2.
4
Resilience of biochemical activity in protein domains in the face of structural divergence.
Curr Opin Struct Biol. 2014 Jun;26:92-103. doi: 10.1016/j.sbi.2014.05.008. Epub 2014 Jun 19.
5
Prediction of detailed enzyme functions and identification of specificity determining residues by random forests.
PLoS One. 2014 Jan 8;9(1):e84623. doi: 10.1371/journal.pone.0084623. eCollection 2014.
6
The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes.
Nucleic Acids Res. 2014 Jan;42(Database issue):D485-9. doi: 10.1093/nar/gkt1243. Epub 2013 Dec 6.
7
SCOPe: Structural Classification of Proteins--extended, integrating SCOP and ASTRAL data and classification of new structures.
Nucleic Acids Res. 2014 Jan;42(Database issue):D304-9. doi: 10.1093/nar/gkt1240. Epub 2013 Dec 3.
8
Biases in the experimental annotations of protein function and their effect on our understanding of protein function space.
PLoS Comput Biol. 2013;9(5):e1003063. doi: 10.1371/journal.pcbi.1003063. Epub 2013 May 30.
9
Origin and evolution of protein fold designs inferred from phylogenomic analysis of CATH domain structures in proteomes.
PLoS Comput Biol. 2013;9(3):e1003009. doi: 10.1371/journal.pcbi.1003009. Epub 2013 Mar 28.
10
What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs.
J Mol Biol. 2013 Jul 24;425(14):2609-21. doi: 10.1016/j.jmb.2013.03.033. Epub 2013 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验