Suppr超能文献

用于人体传感器网络的低功耗无线心电图采集与分类系统。

Low-power wireless ECG acquisition and classification system for body sensor networks.

作者信息

Lee Shuenn-Yuh, Hong Jia-Hua, Hsieh Cheng-Han, Liang Ming-Chun, Chang Chien Shih-Yu, Lin Kuang-Hao

出版信息

IEEE J Biomed Health Inform. 2015 Jan;19(1):236-46. doi: 10.1109/JBHI.2014.2310354.

Abstract

A low-power biosignal acquisition and classification system for body sensor networks is proposed. The proposed system consists of three main parts: 1) a high-pass sigma delta modulator-based biosignal processor (BSP) for signal acquisition and digitization, 2) a low-power, super-regenerative on-off keying transceiver for short-range wireless transmission, and 3) a digital signal processor (DSP) for electrocardiogram (ECG) classification. The BSP and transmitter circuits, which are the body-end circuits, can be operated for over 80 days using two 605 mAH zinc-air batteries as the power supply; the power consumption is 586.5 μW. As for the radio frequency receiver and DSP, which are the receiving-end circuits that can be integrated in smartphones or personal computers, power consumption is less than 1 mW. With a wavelet transform-based digital signal processing circuit and a diagnosis control by cardiologists, the accuracy of beat detection and ECG classification are close to 99.44% and 97.25%, respectively. All chips are fabricated in TSMC 0.18-μm standard CMOS process.

摘要

提出了一种用于人体传感器网络的低功耗生物信号采集与分类系统。该系统主要由三个部分组成:1)基于高通sigma-delta调制器的生物信号处理器(BSP),用于信号采集和数字化;2)用于短距离无线传输的低功耗、超再生开关键控收发器;3)用于心电图(ECG)分类的数字信号处理器(DSP)。作为人体端电路的BSP和发射机电路,使用两节605 mAH锌空气电池作为电源可运行80多天;功耗为586.5 μW。至于作为接收端电路的射频接收器和DSP,可集成在智能手机或个人计算机中,功耗小于1 mW。通过基于小波变换的数字信号处理电路和心脏病专家的诊断控制,心跳检测和心电图分类的准确率分别接近99.44%和97.25%。所有芯片均采用台积电0.18-μm标准CMOS工艺制造。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验