Department of Physics, University of Illinois, Urbana, IL 61801.
Department of Physics, University of Illinois, Urbana, IL 61801
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):651-6. doi: 10.1073/pnas.1422509112. Epub 2015 Jan 5.
We developed a microscopic theory for the point-contact conductance between a metallic electrode and a strongly correlated material using the nonequilibrium Schwinger-Kadanoff-Baym-Keldysh formalism. We explicitly show that, in the classical limit, contact size shorter than the scattering length of the system, the microscopic model can be reduced to an effective model with transfer matrix elements that conserve in-plane momentum. We found that the conductance dI/dV is proportional to the effective density of states, that is, the integrated single-particle spectral function A(ω = eV) over the whole Brillouin zone. From this conclusion, we are able to establish the conditions under which a non-Fermi liquid metal exhibits a zero-bias peak in the conductance. This finding is discussed in the context of recent point-contact spectroscopy on the iron pnictides and chalcogenides, which has exhibited a zero-bias conductance peak.
我们使用非平衡 Schwinger-Kadanoff-Baym-Keldysh 形式主义发展了一种用于金属电极和强关联材料之间点接触电导的微观理论。我们明确地表明,在经典极限下,接触尺寸短于系统的散射长度,微观模型可以简化为一个具有转移矩阵元的有效模型,这些转移矩阵元在面内动量上守恒。我们发现,电导 dI/dV 与有效态密度成正比,即整个布里渊区上的单粒子能谱函数 A(ω=eV)的积分。从这个结论,我们能够确定非费米液体金属在电导中表现出零偏压峰的条件。这一发现是在最近对铁的磷化物和硫属化物的点接触光谱学的背景下讨论的,这些研究已经表现出了零偏压电导峰。