Shinohara Takeshi, Ikawa Shukuko, Iwasaki Wakana, Hiraki Toshiki, Hikima Takaaki, Mikawa Tsutomu, Arai Naoto, Kamiya Nobuo, Shibata Takehiko
Cellular & Molecular Biology Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
Cellular & Molecular Biology Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan.
Nucleic Acids Res. 2015 Jan;43(2):973-86. doi: 10.1093/nar/gku1364. Epub 2015 Jan 5.
In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mechanism for this conserved binding order remain unknown. A comparison of the loop L1 structures in a DNA-free RecA crystal that we originally determined and in the reported DNA-bound active RecA crystals suggested that the aspartate at position 161 in loop L1 in DNA-free RecA prevented double-stranded, but not single-stranded, DNA-binding to the primary site. This was confirmed by the effects of the Ala-replacement of Asp-161 (D161A), analyzed directly by gel-mobility shift assays and indirectly by DNA-dependent ATPase activity and SOS repressor cleavage. When RecA/Rad51-recombinases interact with double-stranded DNA before single-stranded DNA, homologous joint-formation is suppressed, likely by forming a dead-end product. We found that the D161A-replacement reduced this suppression, probably by allowing double-stranded DNA to bind preferentially and reversibly to the primary site. Thus, Asp-161 in the flexible loop L1 of wild-type RecA determines the preference for single-stranded DNA-binding to the primary site and regulates the DNA-binding order in RecA-catalyzed recombinase reactions.
在所有生物体中,RecA家族重组酶催化同源基因重组中的同源接头形成,这对基因组稳定性和多样化至关重要。在同源接头形成过程中,结合ATP的RecA/Rad51重组酶首先在其主要位点结合单链DNA,然后在另一位点与双链DNA相互作用。这种保守结合顺序的潜在原因和调控机制仍然未知。我们最初测定的无DNA的RecA晶体与已报道的结合DNA的活性RecA晶体中L1环结构的比较表明,无DNA的RecA中L1环第161位的天冬氨酸可阻止双链而非单链DNA结合到主要位点。通过天冬氨酸161(D161A)的丙氨酸替代效应得到了证实,该效应通过凝胶迁移率变动分析直接分析,并通过DNA依赖性ATP酶活性和SOS阻遏物切割间接分析。当RecA/Rad51重组酶在单链DNA之前与双链DNA相互作用时,同源接头形成受到抑制,可能是通过形成一种终产物。我们发现D161A替代减少了这种抑制,可能是通过允许双链DNA优先且可逆地结合到主要位点。因此,野生型RecA的柔性L1环中的天冬氨酸161决定了单链DNA结合到主要位点的偏好,并调节RecA催化的重组酶反应中的DNA结合顺序。