Suppr超能文献

用于胞质和细胞器Ca2+测量的基因编码FRET传感器的特性与应用

Properties and use of genetically encoded FRET sensors for cytosolic and organellar Ca2+ measurements.

作者信息

Park J Genevieve, Palmer Amy E

机构信息

Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309.

出版信息

Cold Spring Harb Protoc. 2015 Jan 5;2015(1):pdb.top066043. doi: 10.1101/pdb.top066043.

Abstract

In the last 15 years, there has been an explosion in the development of genetically encoded biosensors that report enzyme activity, chemical transformation, or concentration of ions and molecules in living cells. Currently, there are well over 120 biosensors of different cellular targets. As a general design principle, these sensors convert a molecular event, such as the binding of a molecule to a sensing domain or a signal-induced change in protein conformation, into a change in the sensor's fluorescence properties. In contrast to small-molecule sensors, genetically encoded sensors are generated when sensor-encoding nucleic acid sequences, which have been introduced by transgenic technologies, are translated in cells, tissues, or organisms. One of the best developed classes of biosensors is the genetically encoded Ca(2+) indicators (GECIs). Here, we briefly summarize the properties of ratiometric GECIs and describe how they are used to quantify Ca(2+) in specific cellular locations, such as the cytosol, nucleus, endoplasmic reticulum, and mitochondria.

摘要

在过去15年里,用于报告活细胞中酶活性、化学转化或离子与分子浓度的基因编码生物传感器发展迅猛。目前,针对不同细胞靶点的生物传感器已超过120种。作为一般设计原则,这些传感器将分子事件(如分子与传感结构域的结合或信号诱导的蛋白质构象变化)转化为传感器荧光特性的变化。与小分子传感器不同,基因编码传感器是通过转基因技术引入的传感器编码核酸序列在细胞、组织或生物体中翻译产生的。生物传感器中发展最为成熟的一类是基因编码钙离子指示剂(GECIs)。在此,我们简要总结比率型GECIs的特性,并描述它们如何用于量化特定细胞位置(如细胞质、细胞核、内质网和线粒体)中的钙离子。

相似文献

1
Properties and use of genetically encoded FRET sensors for cytosolic and organellar Ca2+ measurements.
Cold Spring Harb Protoc. 2015 Jan 5;2015(1):pdb.top066043. doi: 10.1101/pdb.top066043.
2
Measuring the in situ Kd of a genetically encoded Ca2+ sensor.
Cold Spring Harb Protoc. 2015 Jan 5;2015(1):pdb.prot076554. doi: 10.1101/pdb.prot076554.
3
Verifying the function and localization of genetically encoded Ca2+ sensors and converting FRET ratios to Ca2+ concentrations.
Cold Spring Harb Protoc. 2015 Jan 5;2015(1):pdb.prot076547. doi: 10.1101/pdb.prot076547.
4
Genetically Encoded Fluorescent Indicators for Organellar Calcium Imaging.
Biophys J. 2016 Sep 20;111(6):1119-1131. doi: 10.1016/j.bpj.2016.04.054. Epub 2016 Jul 29.
6
Recent progress in the development of genetically encoded Ca2+ indicators.
J Med Invest. 2015;62(1-2):24-8. doi: 10.2152/jmi.62.24.
8
Genetically Encoded Förster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level.
ACS Sens. 2018 Aug 24;3(8):1462-1470. doi: 10.1021/acssensors.8b00143. Epub 2018 Jul 18.
9
The design and application of genetically encodable biosensors based on fluorescent proteins.
Methods Mol Biol. 2014;1071:1-16. doi: 10.1007/978-1-62703-622-1_1.
10
Using Genetically Encoded Fluorescent Biosensors for Quantitative In Vivo Imaging.
Methods Mol Biol. 2021;2200:303-322. doi: 10.1007/978-1-0716-0880-7_14.

引用本文的文献

1
Intein-Mediated Protein Engineering for Cell-Based Biosensors.
Biosensors (Basel). 2022 Apr 28;12(5):283. doi: 10.3390/bios12050283.
2
Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer's disease.
Stem Cell Rev Rep. 2022 Feb;18(2):696-717. doi: 10.1007/s12015-020-10068-9. Epub 2020 Nov 12.
3
Genetically Encoded Calcium Indicators: A New Tool in Renal Hypertension Research.
Front Med (Lausanne). 2019 Jun 13;6:128. doi: 10.3389/fmed.2019.00128. eCollection 2019.
4
Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells.
Front Neurosci. 2015 Dec 18;9:480. doi: 10.3389/fnins.2015.00480. eCollection 2015.

本文引用的文献

1
Imaging neuronal activity with genetically encoded calcium indicators.
Cold Spring Harb Protoc. 2012 Jun 1;2012(6):647-56. doi: 10.1101/pdb.top069609.
2
Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes.
Biochim Biophys Acta. 2012 Sep;1823(9):1406-15. doi: 10.1016/j.bbamcr.2012.04.001. Epub 2012 Apr 13.
4
Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7351-6. doi: 10.1073/pnas.1015686108. Epub 2011 Apr 18.
5
Genetically encoded probes for measurement of intracellular calcium.
Methods Cell Biol. 2010;99:153-82. doi: 10.1016/B978-0-12-374841-6.00006-2.
6
Practical aspects of measuring intracellular calcium signals with fluorescent indicators.
Methods Cell Biol. 2010;99:113-52. doi: 10.1016/B978-0-12-374841-6.00005-0.
7
Spontaneous network activity visualized by ultrasensitive Ca(2+) indicators, yellow Cameleon-Nano.
Nat Methods. 2010 Sep;7(9):729-32. doi: 10.1038/nmeth.1488. Epub 2010 Aug 8.
8
MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake.
Nature. 2010 Sep 16;467(7313):291-6. doi: 10.1038/nature09358. Epub 2010 Aug 8.
9
Using a genetically targeted sensor to investigate the role of presenilin-1 in ER Ca2+ levels and dynamics.
Mol Biosyst. 2010 Sep;6(9):1640-9. doi: 10.1039/c001975e. Epub 2010 Apr 8.
10
Genetically encoded sensors to elucidate spatial distribution of cellular zinc.
J Biol Chem. 2009 Jun 12;284(24):16289-16297. doi: 10.1074/jbc.M900501200. Epub 2009 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验