Lesne Annick, Foray Nicolas, Cathala Guy, Forné Thierry, Wong Hua, Victor Jean-Marc
Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, UPMC Université Paris 06, Sorbonne Universités, F-75005, Paris, France. Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Université de Montpellier, F-34293, Montpellier, France. CNRS GDR 3536, UPMC Université Paris 06, F-75005, Paris, France.
J Phys Condens Matter. 2015 Feb 18;27(6):064114. doi: 10.1088/0953-8984/27/6/064114. Epub 2015 Jan 7.
The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level. At a higher scale, different epigenetic constraints delineate different statistically dominant subsets of accessible chromatin fiber conformations, which each favors the assembly of dedicated regulatory complexes, as detailed on the emblematic example of the mouse Igf2-H19 gene locus and its parental imprinting. This physical view offers a mechanistic and spatially structured explanation of the observed correlation between transcriptional activity and histone modifications. The evolutionary origin of allosteric control supports to speak of an 'epigenetic code', by which events involved in transcriptional regulation are encoded in histone modifications in a context-dependent way.
大约五十年前引入的蛋白质变构概念,此后已扩展到DNA变构,即局部触发的DNA结构转变远程控制其他DNA结合事件。我们进一步扩展这一概念,并提出由组蛋白尾部共价修饰诱导的染色质纤维变构转变可能在转录调控中起关键作用。我们提出了一个综合的设想,阐述了不同尺度下的变构机制:组蛋白尾部乙酰化诱导的凝聚染色质纤维的变构转变改变了嵌入DNA所经历的机械约束,从而可能控制变构转录因子的DNA结合或连接DNA水平上的进一步变构机制。在更高的尺度上,不同的表观遗传约束描绘了可及染色质纤维构象的不同统计学上占主导地位的子集,每个子集都有利于特定调控复合物的组装,如小鼠Igf2 - H19基因座及其亲本印记的典型例子所详述。这种物理观点为观察到的转录活性与组蛋白修饰之间的相关性提供了一种机制性和空间结构化的解释。变构控制的进化起源支持了“表观遗传密码”的说法,即转录调控中涉及的事件以依赖于上下文的方式编码在组蛋白修饰中。