Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66,4058 Basel, Switzerland.
Adv Genet. 2010;70:101-41. doi: 10.1016/B978-0-12-380866-0.60005-8.
Cellular functions including transcription regulation, DNA repair, and DNA replication need to be tightly regulated. DNA sequence can contribute to the regulation of these mechanisms. This is exemplified by the consensus sequences that allow the binding of specific transcription factors, thus regulating transcription rates. Another layer of regulation resides in modifications that do not affect the DNA sequence itself but still results in the modification of chromatin structure and properties, thus affecting the readout of the underlying DNA sequence. These modifications are dubbed as "epigenetic modifications" and include, among others, histone modifications, DNA methylation, and small RNAs. While these events can independently regulate cellular mechanisms, recent studies indicate that joint activities of different epigenetic modifications could result in a common outcome. In this chapter, I will attempt to recapitulate the best known examples of collaborative activities between epigenetic modifications. I will emphasize mostly on the effect of crosstalks between epigenetic modifications on transcription regulation, simply because it is the most exposed and studied aspect of epigenetic interactions. I will also summarize the effect of epigenetic interactions on DNA damage response and DNA repair. The involvement of epigenetic crosstalks in cancer formation, progression, and treatment will be emphasized throughout the manuscript. Due to space restrictions, additional aspects involving histone replacements [Park, Y. J., and Luger, K. (2008). Histone chaperones in nucleosome eviction and histone exchange. Curr. Opin. Struct. Biol.18, 282-289.], histone variants [Boulard, M., Bouvet, P., Kundu, T. K., and Dimitrov, S. (2007). Histone variant nucleosomes: Structure, function and implication in disease. Subcell. Biochem. 41, 71-89; Talbert, P. B., and Henikoff, S. (2010). Histone variants-Ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol.11, 264-275.], and histone modification readers [de la Cruz, X., Lois, S., Sanchez-Molina, S., and Martinez-Balbas, M. A. (2005). Do protein motifs read the histone code? Bioessays27, 164-175; Grewal, S. I., and Jia, S. (2007). Heterochromatin revisited. Nat. Rev. Genet.8, 35-46.] will not be addressed in depth in this chapter, and the reader is referred to the reviews cited here.
细胞功能包括转录调控、DNA 修复和 DNA 复制,都需要受到严格的调控。DNA 序列可以有助于调控这些机制。这可以通过允许特定转录因子结合的共有序列来例证,从而调节转录速率。另一个调控层次在于不影响 DNA 序列本身但仍导致染色质结构和性质改变的修饰,从而影响潜在 DNA 序列的读出。这些修饰被称为“表观遗传修饰”,包括组蛋白修饰、DNA 甲基化和小 RNA 等。虽然这些事件可以独立地调控细胞机制,但最近的研究表明,不同表观遗传修饰的联合活动可能会产生共同的结果。在这一章中,我将尝试总结表观遗传修饰之间协同作用的最佳已知实例。我将主要强调表观遗传修饰之间的相互作用对转录调控的影响,因为这是表观遗传相互作用中最暴露和研究最充分的方面。我还将总结表观遗传相互作用对 DNA 损伤反应和 DNA 修复的影响。本文将强调表观遗传串扰在癌症形成、进展和治疗中的参与。由于篇幅限制,本文还将涉及涉及组蛋白替换的其他方面[Park, Y. J., and Luger, K. (2008). Histone chaperones in nucleosome eviction and histone exchange. Curr. Opin. Struct. Biol.18, 282-289. ]、组蛋白变体[Boulard, M., Bouvet, P., Kundu, T. K., and Dimitrov, S. (2007). Histone variant nucleosomes: Structure, function and implication in disease. Subcell. Biochem. 41, 71-89; Talbert, P. B., and Henikoff, S. (2010). Histone variants—Ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol.11, 264-275. ]和组蛋白修饰读取器[de la Cruz, X., Lois, S., Sanchez-Molina, S., and Martinez-Balbas, M. A. (2005). Do protein motifs read the histone code? Bioessays27, 164-175; Grewal, S. I., and Jia, S. (2007). Heterochromatin revisited. Nat. Rev. Genet.8, 35-46. ],但在这一章中不会深入探讨,读者可参考此处引用的评论。