del Hoyo J, de la Cruz A Ruiz, Grace E, Ferrer A, Siegel J, Pasquazi A, Assanto G, Solis J
Laser Processing Group, Instituto de Optica (CSIC), Serrano 121, Madrid 28006, Spain.
Formerly at Laser Processing Group, Instituto de Optica (CSIC), Serrano 121, Madrid 28006, Spain.
Sci Rep. 2015 Jan 7;5:7650. doi: 10.1038/srep07650.
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
超快激光加工应用需要快速的方法来评估激光束的非线性传播,以便在各种情况下预测加工参数的最佳范围。我们在此开发了一种基于简单监测非线性光束整形并与数值预测进行对比的方法。该数值代码通过采用一种计算效率高的先进方法,在简化条件下求解包含非线性吸收的非线性薛定谔方程。通过与实验结果进行比较,我们可以快速估算材料的非线性折射率和非线性吸收系数。这种方法的有效性已在各种非线性起关键作用的实验中得到验证,如空间孤子整形或飞秒激光波导写入。对于可以忽略自由载流子产生效应的传播功率密度,该方法能提供出色的结果。高于此阈值时,椭圆光束非线性传播的特性使得能够获取材料内部能量沉积的即时图像,该图像足够真实,可用于估算有效非线性折射率和非线性吸收系数,进而用于预测材料内部能量沉积的空间分布并在写入过程中控制光束。