Suppr超能文献

来自啤酒花的异源膜结合的香叶基转移酶复合物催化苦味酸途径中的三个连续的芳基香叶基化反应。

A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway.

机构信息

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.L., Z.B., H.Q., L.M., G.W.);Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom (A.J.K.); andGraduate School of the Chinese Academy of Sciences, Beijing 100049, China (Z.B., L.M.).

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.L., Z.B., H.Q., L.M., G.W.);Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom (A.J.K.); andGraduate School of the Chinese Academy of Sciences, Beijing 100049, China (Z.B., L.M.)

出版信息

Plant Physiol. 2015 Mar;167(3):650-9. doi: 10.1104/pp.114.253682. Epub 2015 Jan 6.

Abstract

Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop.

摘要

苦味酸(α 和 β 型)占啤酒花(Humulus lupulus)腺毛鲜重的 30%以上,以其对啤酒苦味的贡献而闻名。这些多聚异戊二烯类化合物还表现出多种生物活性,其中一些对人类健康具有潜在益处。苦味酸的生物合成途径已经得到了广泛的研究,苦味酸合成早期步骤的基因已经被克隆并具有功能特征。然而,对于催化 β-苦味酸途径中三个连续的 prenylation 步骤的酶知之甚少。在这里,我们采用酵母(Saccharomyces cerevisiae)系统来鉴定芳香族 prenyltransferase(PT)基因。从啤酒花腺毛特异性 cDNA 文库中获得的两个 PT 基因(HlPT1L 和 HlPT2),采用该酵母系统进行了功能鉴定。在酵母中,共表达密码子优化的 PT1L 和 PT2 以及上游基因,导致苦味酸的产生,但当单独表达任何一个 PT 基因时,都没有检测到苦味酸。PT1L 和 PT2 中的天冬氨酸丰富基序的逐步突变进一步揭示了这两种酶在 β-苦味酸生物合成中的 prenylation 序列:PT1L 仅催化第一个 prenylation 步骤,PT2 催化两个随后的 prenylation 步骤。酵母双杂交系统、相互共免疫沉淀和体外生化测定证实了 PT1L 和 PT2 之间通过相互作用形成的代谢物。这些结果提供了直接证据,证明了在啤酒花苦味酸生物合成中,膜结合 prenyltransferase 的功能代谢物的参与。

相似文献

2
HlPT-1, a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops.
Biochem Biophys Res Commun. 2012 Jan 6;417(1):393-8. doi: 10.1016/j.bbrc.2011.11.125. Epub 2011 Dec 7.
7
Dissection of Dynamic Transcriptome Landscape of Leaf, Bract, and Lupulin Gland in Hop ( L.).
Int J Mol Sci. 2019 Dec 29;21(1):233. doi: 10.3390/ijms21010233.
8
Investigation of Bitter Hop-Derived Compounds and Their Cognate Bitter Taste Receptors.
J Agric Food Chem. 2020 Sep 23;68(38):10414-10423. doi: 10.1021/acs.jafc.9b07863. Epub 2020 Feb 13.
9
Terpene biosynthesis in glandular trichomes of hop.
Plant Physiol. 2008 Nov;148(3):1254-66. doi: 10.1104/pp.108.125187. Epub 2008 Sep 5.
10
Noncatalytic chalcone isomerase-fold proteins in are auxiliary components in prenylated flavonoid biosynthesis.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5223-E5232. doi: 10.1073/pnas.1802223115. Epub 2018 May 14.

引用本文的文献

1
An X-linked sex determination mechanism in cannabis and hop.
bioRxiv. 2025 Jul 24:2024.12.09.627636. doi: 10.1101/2024.12.09.627636.
2
Functional targeting of membrane transporters and enzymes to peroxisomes.
Nat Chem Biol. 2025 Jun 16. doi: 10.1038/s41589-025-01948-7.
3
Regiodivergent biosynthesis of bridged bicyclononanes.
Nat Commun. 2024 May 28;15(1):4525. doi: 10.1038/s41467-024-48879-w.
4
Prenylated Flavonoids of the Moraceae Family: A Comprehensive Review of Their Biological Activities.
Plants (Basel). 2024 Apr 27;13(9):1211. doi: 10.3390/plants13091211.
5
De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast.
Nat Commun. 2024 Jan 4;15(1):253. doi: 10.1038/s41467-023-44654-5.
6
Discovering Dynamic Plant Enzyme Complexes in Yeast for Kratom Alkaloid Pathway Identification.
Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202307995. doi: 10.1002/anie.202307995. Epub 2023 Aug 15.
8
Climate change shapes the future evolution of plant metabolism.
Adv Genet (Hoboken). 2020 Aug 10;1(1):e10022. doi: 10.1002/ggn2.10022. eCollection 2020 Dec.
9
Dearomative -diprenylation of hydroxynaphthalenes by an engineered fungal prenyltransferase.
RSC Adv. 2022 Sep 27;12(42):27550-27554. doi: 10.1039/d2ra04837j. eCollection 2022 Sep 22.
10
Xanthone Biosynthetic Pathway in Plants: A Review.
Front Plant Sci. 2022 Apr 8;13:809497. doi: 10.3389/fpls.2022.809497. eCollection 2022.

本文引用的文献

1
Molecular cloning and characterization of a geranyl diphosphate-specific aromatic prenyltransferase from lemon.
Plant Physiol. 2014 Sep;166(1):80-90. doi: 10.1104/pp.114.246892. Epub 2014 Jul 30.
2
Structural insights into ubiquinone biosynthesis in membranes.
Science. 2014 Feb 21;343(6173):878-81. doi: 10.1126/science.1246774.
3
Novel fermentation processes for manufacturing plant natural products.
Curr Opin Biotechnol. 2014 Feb;25:17-23. doi: 10.1016/j.copbio.2013.08.009. Epub 2013 Sep 8.
7
Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus.
Plant Physiol. 2012 May;159(1):70-80. doi: 10.1104/pp.112.195271. Epub 2012 Mar 19.
8
HlPT-1, a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops.
Biochem Biophys Res Commun. 2012 Jan 6;417(1):393-8. doi: 10.1016/j.bbrc.2011.11.125. Epub 2011 Dec 7.
9
Hop bitter acids exhibit anti-fibrogenic effects on hepatic stellate cells in vitro.
Exp Mol Pathol. 2012 Apr;92(2):222-8. doi: 10.1016/j.yexmp.2011.11.005. Epub 2011 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验