Siu Ka-Hei, Lee Victoria, Dueber John E
Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
UC Berkeley and UCSF Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
Nat Chem Biol. 2025 Jun 16. doi: 10.1038/s41589-025-01948-7.
Engineered peroxisomes hold promise as a highly versatile platform for compartmentalizing engineered metabolic pathways, insulating them from native cellular factors to prevent undesired crosstalk. However, native peroxisomes often lack the required substrates and cofactors in their lumen; accordingly, nonnative membrane proteins (MPs) must be recruited to the peroxisomal membrane to support heterologous pathways requiring these molecules. We developed a robust, modular 'chauffeur' strategy that enables MP folding in the endoplasmic reticulum (ER) followed by trafficking to the peroxisomal membrane through an engineered interaction in the cytosol with a transmembrane domain natively trafficked from the ER to the peroxisome. We demonstrate the modularity of this strategy by successfully redirecting multiple MP cargoes, including heterologous plant MPs, and observed increased titers for a monoterpene biosynthetic pathway. This strategy overcomes the challenges of misfolding and sorting of MPs to the peroxisome and, accordingly, expands the repertoire of pathways that can be compartmentalized into this organelle.
工程化过氧化物酶体有望成为一个高度通用的平台,用于分隔工程化代谢途径,使其与天然细胞因子隔离,以防止不必要的串扰。然而,天然过氧化物酶体的内腔通常缺乏所需的底物和辅因子;因此,必须将非天然膜蛋白(MPs)招募到过氧化物酶体膜上,以支持需要这些分子的异源途径。我们开发了一种强大的模块化“驱动”策略,该策略能够使MPs在内质网(ER)中折叠,然后通过与从ER天然运输到过氧化物酶体的跨膜结构域在细胞质中进行工程化相互作用,运输到过氧化物酶体膜。我们通过成功重定向多种MP货物(包括异源植物MPs)证明了该策略的模块化,并观察到单萜生物合成途径的滴度增加。该策略克服了MPs错误折叠和分选到过氧化物酶体的挑战,因此扩展了可以分隔到该细胞器中的途径种类。