Tittel Janine, Welz Tobias, Czogalla Aleksander, Dietrich Susanne, Samol-Wolf Annette, Schulte Markos, Schwille Petra, Weidemann Thomas, Kerkhoff Eugen
From the Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany, Biotechnology Center (BIOTEC), Biophysics Research Group and.
Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany, and.
J Biol Chem. 2015 Mar 6;290(10):6428-44. doi: 10.1074/jbc.M114.602672. Epub 2015 Jan 6.
Spir and formin (FMN)-type actin nucleators initiate actin polymerization at vesicular membranes necessary for long range vesicular transport processes. Here we studied in detail the membrane binding properties and protein/protein interactions that govern the assembly of the membrane-associated Spir·FMN complex. Using biomimetic membrane models we show that binding of the C-terminal Spir-2 FYVE-type zinc finger involves both the presence of negatively charged lipids and hydrophobic contributions from the turret loop that intrudes the lipid bilayer. In solution, we uncovered a yet unknown intramolecular interaction between the Spir-2 FYVE-type domain and the N-terminal kinase non-catalytic C-lobe domain (KIND) that could not be detected in the membrane-bound state. Interestingly, we found that the intramolecular Spir-2 FYVE/KIND and the trans-regulatory Fmn-2-FSI/Spir-2-KIND interactions are competitive. We therefore characterized co-expressed Spir-2 and Fmn-2 fluorescent protein fusions in living cells by fluorescence cross-correlation spectroscopy. The data corroborate a model according to which Spir-2 exists in two different states, a cytosolic monomeric conformation and a membrane-bound state in which the KIND domain is released and accessible for subsequent Fmn-2 recruitment. This sequence of interactions mechanistically couples membrane binding of Spir to the recruitment of FMN, a pivotal step for initiating actin nucleation at vesicular membranes.
螺旋体和formin(FMN)型肌动蛋白成核因子在长距离囊泡运输过程所需的囊泡膜上启动肌动蛋白聚合。在这里,我们详细研究了控制膜相关螺旋体·FMN复合物组装的膜结合特性和蛋白质/蛋白质相互作用。使用仿生膜模型,我们表明C端螺旋体-2 FYVE型锌指的结合既涉及带负电荷的脂质的存在,也涉及侵入脂质双层的炮塔环的疏水作用。在溶液中,我们发现了螺旋体-2 FYVE型结构域与N端激酶非催化C叶结构域(KIND)之间一种尚未知晓的分子内相互作用,这种相互作用在膜结合状态下无法检测到。有趣的是,我们发现分子内螺旋体-2 FYVE/KIND和反式调节Fmn-2-FSI/螺旋体-2-KIND相互作用是竞争性的。因此,我们通过荧光互相关光谱法对活细胞中共表达的螺旋体-2和Fmn-2荧光蛋白融合体进行了表征。数据证实了一个模型,根据该模型,螺旋体-2以两种不同状态存在,一种是胞质单体构象,另一种是膜结合状态,其中KIND结构域被释放并可用于随后的Fmn-2招募。这种相互作用序列在机制上将螺旋体的膜结合与FMN的招募联系起来,这是在囊泡膜上启动肌动蛋白成核的关键步骤。