Suppr超能文献

在等长收缩和缩短收缩的肌肉中,吸热的ATP水解和横桥附着步骤推动着力量随温度升高而增加。

The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.

作者信息

Offer Gerald, Ranatunga K W

机构信息

Muscle Contraction Group, School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, UK.

出版信息

J Physiol. 2015 Apr 15;593(8):1997-2016. doi: 10.1113/jphysiol.2014.284992. Epub 2015 Feb 11.

Abstract

The isometric tetanic tension of skeletal muscle increases with temperature because attached crossbridge states bearing a relatively low force convert to those bearing a higher force. It was previously proposed that the tension-generating step(s) in the crossbridge cycle was highly endothermic and was therefore itself directly targeted by changes in temperature. However, this did not explain why a rapid rise in temperature (a temperature jump) caused a much slower rate of rise of tension than a rapid length step. This led to suggestions that the step targeted by a temperature rise is not the tension-generating step but is an extra step in the attached pathway of the crossbridge cycle, perhaps located on a parallel pathway. This enigma has been a major obstacle to a full understanding of the operation of the crossbridge cycle. We have now used a previously developed mechano-kinetic model of the crossbridge cycle in frog muscle to simulate the temperature dependence of isometric tension and shortening velocity. We allowed all five steps in the cycle to be temperature-sensitive. Models with different starting combinations of enthalpy changes and activation enthalpies for the five steps were refined by downhill simplex runs and scored by their ability to fit experimental data on the temperature dependence of isometric tension and the relationship between force and shortening velocity in frog muscle. We conclude that the first tension-generating step may be weakly endothermic and that the rise of tension with temperature is largely driven by the preceding two strongly endothermic steps of ATP hydrolysis and attachment of M.ADP.Pi to actin. The refined model gave a reasonable fit to the available experimental data and after a temperature jump the overall rate of tension rise was much slower than after a length step as observed experimentally. The findings aid our understanding of the crossbridge cycle by showing that it may not be necessary to include an additional temperature-sensitive step.

摘要

骨骼肌的等长强直张力随温度升高而增加,因为附着的横桥状态从承受相对较低的力转变为承受较高的力。此前有人提出,横桥循环中产生张力的步骤是高度吸热的,因此其本身直接受温度变化的影响。然而,这并不能解释为什么温度的快速升高(温度跃升)导致张力上升的速率比长度的快速变化慢得多。这导致有人提出,温度升高所针对的步骤不是产生张力的步骤,而是横桥循环附着途径中的一个额外步骤,可能位于平行途径上。这个谜团一直是全面理解横桥循环运作的主要障碍。我们现在使用之前开发的青蛙肌肉横桥循环的机械动力学模型来模拟等长张力和缩短速度的温度依赖性。我们允许循环中的所有五个步骤对温度敏感。通过下山单纯形法对五个步骤具有不同焓变和活化焓起始组合的模型进行优化,并根据它们拟合青蛙肌肉等长张力温度依赖性以及力与缩短速度关系的实验数据的能力进行评分。我们得出结论,第一个产生张力的步骤可能是弱吸热的,并且张力随温度的升高很大程度上是由ATP水解以及M.ADP.Pi与肌动蛋白附着的前两个强吸热步骤驱动的。优化后的模型与现有的实验数据拟合良好,并且在温度跃升后,张力上升的总体速率比长度变化后慢得多,这与实验观察结果一致。这些发现有助于我们理解横桥循环,表明可能没有必要包含一个额外的对温度敏感的步骤。

相似文献

引用本文的文献

5
Mitochondria and the thermal limits of ectotherms.线粒体和变温动物的热极限。
J Exp Biol. 2020 Oct 27;223(Pt 20):jeb227801. doi: 10.1242/jeb.227801.
7
Dr Gerald W. Offer (1938-2019); an appreciation.杰拉尔德·W·奥弗博士(1938 - 2019):一份敬意。
J Muscle Res Cell Motil. 2019 Dec;40(3-4):275-278. doi: 10.1007/s10974-019-09561-7. Epub 2019 Oct 23.
8
Microscopic heat pulses activate cardiac thin filaments.微观热脉冲激活心脏细肌丝。
J Gen Physiol. 2019 Jun 3;151(6):860-869. doi: 10.1085/jgp.201812243. Epub 2019 Apr 22.

本文引用的文献

2
A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle.脊椎动物骨骼肌力学的热敏感性综述。
J Comp Physiol B. 2013 Aug;183(6):723-33. doi: 10.1007/s00360-013-0748-1. Epub 2013 Mar 13.
9
Effect of temperature on the working stroke of muscle myosin.温度对肌肉肌球蛋白工作行程的影响。
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13927-32. doi: 10.1073/pnas.0506795102. Epub 2005 Sep 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验