Department of Electrical and Computer Engineering, ‡Department of Physics, §Department of Chemistry, ∥Laboratory for Nanophotonics, and the Rice Quantum Institute, Rice University , MS-378, 6100 Main Street, Houston, Texas 77005, United States.
Nano Lett. 2015 Feb 11;15(2):1324-30. doi: 10.1021/nl5045428. Epub 2015 Jan 12.
In a standing wave optical cavity, the coupling of cavity modes, for example, through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, modal instabilities, even complex chaotic behavior. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry-Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape.
在驻波光学腔中,例如通过非线性介质实现腔模的耦合,会导致各种丰富的非线性动力学现象,如频率推动和拉动、锁模和脉冲、模式不稳定性,甚至复杂的混沌行为。有限长度的金属纳米线支持具有驻波特性的一系列纵向表面等离激元模式:这是法布里-珀罗腔的等离激元模拟。在这里,我们表明将纳米线定位在等离子体纳米天线的间隙内,会导致驻波纳米线等离激元模式与天线结构之间基于无源、基于混合的耦合,介导纳米线等离激元模式本身之间的相互作用。通过纳米天线的位置和形状,可以控制和操纵频率推动和拉动以及特定等离激元模式的增强和抑制。