Suppr超能文献

美国落叶林冠层水平二氧化碳通量与气候和环境变量的相对联系。

Relative linkages of canopy-level CO₂ fluxes with the climatic and environmental variables for US deciduous forests.

作者信息

Ishtiaq Khandker S, Abdul-Aziz Omar I

机构信息

Ecological and Water Resources Engineering Laboratory (EWREL), Department of Civil and Environmental Engineering, Florida International University, 10555 W Flagler Street, EC-3781, Miami, FL, 33174, USA,

出版信息

Environ Manage. 2015 Apr;55(4):943-60. doi: 10.1007/s00267-014-0437-1. Epub 2015 Jan 8.

Abstract

We used a simple, systematic data-analytics approach to determine the relative linkages of different climate and environmental variables with the canopy-level, half-hourly CO2 fluxes of US deciduous forests. Multivariate pattern recognition techniques of principal component and factor analyses were utilized to classify and group climatic, environmental, and ecological variables based on their similarity as drivers, examining their interrelation patterns at different sites. Explanatory partial least squares regression models were developed to estimate the relative linkages of CO2 fluxes with the climatic and environmental variables. Three biophysical process components adequately described the system-data variances. The 'radiation-energy' component had the strongest linkage with CO2 fluxes, whereas the 'aerodynamic' and 'temperature-hydrology' components were low to moderately linked with the carbon fluxes. On average, the 'radiation-energy' component showed 5 and 8 times stronger carbon flux linkages than that of the 'temperature-hydrology' and 'aerodynamic' components, respectively. The similarity of observed patterns among different study sites (representing gradients in climate, canopy heights and soil-formations) indicates that the findings are potentially transferable to other deciduous forests. The similarities also highlight the scope of developing parsimonious data-driven models to predict the potential sequestration of ecosystem carbon under a changing climate and environment. The presented data-analytics provides an objective, empirical foundation to obtain crucial mechanistic insights; complementing process-based model building with a warranted complexity. Model efficiency and accuracy (R(2) = 0.55-0.81; ratio of root-mean-square error to the observed standard deviations, RSR = 0.44-0.67) reiterate the usefulness of multivariate analytics models for gap-filling of instantaneous flux data.

摘要

我们采用了一种简单、系统的数据分析方法,来确定不同气候和环境变量与美国落叶林冠层水平半小时二氧化碳通量之间的相对联系。利用主成分分析和因子分析的多元模式识别技术,根据气候、环境和生态变量作为驱动因素的相似性对其进行分类和分组,研究它们在不同地点的相互关系模式。开发了解释性偏最小二乘回归模型,以估计二氧化碳通量与气候和环境变量之间的相对联系。三个生物物理过程组分充分描述了系统数据的变化。“辐射-能量”组分与二氧化碳通量的联系最强,而“空气动力学”和“温度-水文”组分与碳通量的联系较弱至中等。平均而言,“辐射-能量”组分的碳通量联系分别比“温度-水文”和“空气动力学”组分强5倍和8倍。不同研究地点(代表气候、冠层高度和土壤形成的梯度)观测模式的相似性表明,这些发现可能适用于其他落叶林。这些相似性还突出了开发简约数据驱动模型以预测气候变化和环境下生态系统碳潜在固存的范围。所提出的数据分析提供了一个客观的实证基础,以获得关键的机理见解;以合理的复杂性补充基于过程的模型构建。模型效率和准确性(R(2)=0.55 - 0.81;均方根误差与观测标准差之比,RSR = 0.44 - 0.67)重申了多元分析模型对瞬时通量数据进行缺值填补的有用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验